

COMMUNICATION MODEL FOR
COOPERATIVE ROBOTIC SIMULATOR

By

Acharaporn Pattaravanichanon
M. S., Chulalongkorn University, 2002

B. S., Thammasat University, 1996

A PORTFOLIO

submitted in partial fulfillment of the
requirement for the degree

MASTER OF SOFTWARE ENGINEERING

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, KS

2004

Approved by:

Major Professor
Dr. William Hsu

ABSTRACT

The Communication Model is one of components of Cooperative Robotic Simulator,
which is a research project in Computing and Information Science department at Kansas
State University. This component provides robots an ability to communicate to each
other. The Communication Model not only provides message passing in the system, but
also provides an ability to simulate communication situation by defining the
communication variables such as propagation delay time, maximum range limit,
generating link down, and delivery probability. Since the Communication Model has no
direct access to the robots, the Environment, which is the central part of the system, is
responsible for passing message back and forth to the robots and the Communication
Model. Furthermore, the Environment Control Panel, which is a graphical user interface
tool controlling the current simulation, is responsible for obtaining communication
variables from users and passing to the Communication Model. The Communication
Model will handle messages based on these variables.

 iii

TABLE OF CONTENTS

LIST OF FIGURES..vi
LIST OF TABLES...viii

PHASE I OBJECTIVES ..1

CHAPTER 1 PROJECT OVERVIEW...1
 1. BACKGROUND ...1
 2. PROJECT OVERVIEW..2
 3. GOAL ..2
 4. FEATURES ...2
 5. CONSTRAINTS..3

CHAPTER 2 SOFTWARE REQUIREMENT SPECIFICATION...4
 1. INTRODUCTION..4
 2. OVERALL DESCRIPTION...4
 3. SPECIFIC REQUIREMENT..6

CHAPTER 3 PROJECT PLAN ...10
 1. INTRODUCTION..10
 2. PROJECT SCHEDULE ..10
 3. COST ESTIMATION...11
 4. ARCHITECTURE ELABORATION PLAN..13

CHAPTER 4 SOFTWARE QUALITY ASSURANCE PLAN..15
 1. PURPOSE..15
 2. REFERENCE DOCUMENT ..15
 3. MANAGEMENT ..15
 4. DOCUMENTATION..16
 5. STANDARD, PRACTICES, CONVENTIONS AND METRICS.....................................17
 6. REVIEWS AND AUDITS...17
 7. TEST ..18
 8. PROBLEM REPORTING AND CORRECTIVE ACTION ...18
 9. TOOLS, TECHNIQUES, AND METHODOLOGIES ...18
 10. CODE CONTROLS...18
 11. TRAINING ..18

PHASE II ARCHITECTURE ...19

CHAPTER 5 ARCHITECTURE DESIGN...19
 1. INTRODUCTION..19
 2. CLASS DIAGRAM ...19
 3. SEQUENCE DIAGRAM ..21

 iv

 4. CLASS DESCRIPTION..25
 5. COMMUNICATIONSSYTEM STATE DIAGRAM ...28

CHAPTER 6 FORMAL REQUIREMENT SPECIFICATION ..29
 1. INTRODUCTION..29
 2. SCOPE..29
 3. FORMAL SPECIFICATION DESCRIPTION..29

CHAPTER 7 TEST PLAN...38
 1. TEST PLAN IDENTIFIER..38
 2. INTRODUCTION..38
 3. TEST ITEMS ...38
 4. FEATURES TO BE TESTED ...38
 5. APPROACH ..39
 6. ENVIRONMENT NEEDS...39
 7. TEST CASES...39
 8. SCHEDULE...48

CHAPTER 8 FORMAL TECHNICAL INSPECTION ..49
 1. INTRODUCTION..49
 2. ITEMS TO BE INSPECTED ..49
 3. FORMAL TECHNICAL INSPECTOR...49
 4. FORMAL TECHNICAL INSPECTION CHECKLIST...49

PHASE III IMPLEMENTATION ..51

CHAPTER 9 COMPONENT DESIGN ...51
 1. INTRODUCTION..51
 2. CLASS DIAGRAM ...51
 3. CLASS DESCRIPTION..51

CHAPTER 10 ASSESSMENT EVALUATION ..65
 1. INTRODUCTION..65
 2. TESTING RESULT SUMMARY ...65
 3. TESTING RESULT DETAILS ..65

CHAPTER 11 USER MANUAL...70
 1. INTRODUCTION..70
 2. OVERVIEW ..70
 3. SET UP ...71
 4. USING COMMUNICATION MODEL..74

CHAPTER 12 PROJECT EVALUATION ...85
 1. INTRODUCTION..85
 2. USEFULNESS OF METHODOLOGIES ..85
 3. ESTIMATION ..86

 v

 4. PRODUCT QUALITY ...89
 5. LESSONS LEARNED..89
 6. FUTURE WORK..90

APPENDIX A UML/OCL SPECIFICATION..100
APPENDIX B USE TEST SCRIPT ..108
APPENDIX C FORMAL INSPECTION CHECKLIST...129
APPENDIX D FORMAL INSPECTION LETTER ..131
REFERENCES133

 vi

LIST OF FIGURES

FIGURE 1. COOPERATIVE ROBOTS SIMULATOR.. 2
FIGURE 2. INTERFACES BETWEEN COMMUNICATION MODEL AND THE OTHER COMPONENTS

OF THE COOPERATIVE ROBOTICS SIMULATOR SYSTEM.. 5
FIGURE 3. USE-CASE DIAGRAM FOR THE PRIMARY, HIGH-LEVEL, USE CASES OF THE

COMMUNICATION MODEL FOR COOPERATIVE ROBOTICS SIMULATOR......................... 6
FIGURE 4. USE-CASE DIAGRAM FOR THE PRIMARY LOW-LEVEL USE CASES DETAILING THE

LOW-LEVEL USE CASES ASSOCIATED WITH THE HIGH-LEVEL SEND MESSAGE USE
CASE.. 7

FIGURE 5. USE-CASE DIAGRAM FOR THE PRIMARY LOW-LEVEL USE CASES DETAILING THE
LOW-LEVEL USE CASES ASSOCIATED WITH THE HIGH-LEVEL SET UP PARAMETERS
USE CASE. ... 8

FIGURE 6. COMMUNICATION MODEL FOR COOPERATIVE ROBOTIC SIMULATOR CLASS
DIAGRAM... 20

FIGURE 7. REGISTER ROBOT SEQUENCE DIAGRAM.. 21
FIGURE 8. SEND MESSAGE (BROADCAST MESSAGE) SEQUENCE DIAGRAM....................... 22
FIGURE 9. SEND MESSAGE (POINT-TO-POINT MESSAGE) SEQUENCE DIAGRAM 23
FIGURE 10. GET MESSAGE SEQUENCE DIAGRAM .. 24
FIGURE 11. COMMUNICATIONSSYSTEM CLASS WITH ATTRIBUTES AND OPERATIONS. 25
FIGURE 12. ROBOTCOMMRECORD CLASS WITH ATTRIBUTES AND OPERATIONS................. 26
FIGURE 13. ROBOTPARAMETER CLASS WITH ATTRIBUTES AND OPERATIONS. 26
FIGURE 14. PRIORITYQUEUE CLASS WITH ATTRIBUTES AND OPERATIONS. 27
FIGURE 15. MESSAGE CLASS WITH ATTRIBUTES AND OPERATIONS. 27
FIGURE 16. COMMUNICATIONSSYSTEM STATE CHART DIAGRAM. 28
FIGURE 17. COMMUNICATION MODEL CLASS DIAGRAM ... 51
FIGURE 18. COMMUNICATIONSSYSTEM CLASS.. 52
FIGURE 19. ROBOTCOMMRECORD CLASS ... 57
FIGURE 20. ROBOTPARAMETERS CLASS.. 60
FIGURE 21. PRIORITYQUEUE CLASS .. 61
FIGURE 22. MESSAGE CLASS ... 63
FIGURE 23. INTERACTIONS BETWEEN COMMUNICATION, ENVIRONMENT, CONTROL PANEL

AND ROBOT DIAGRAM ... 70
FIGURE 24. USING ECLIPSE TO CHECK OUT FROM CVS – 1 ... 71
FIGURE 25. USING ECLIPSE TO CHECK OUT FROM CVS – 2 ... 72
FIGURE 26. USING ECLIPSE TO CHECK OUT FROM CVS – 3 ... 73
FIGURE 27. USING ECLIPSE TO CHECK OUT FROM CVS – 4 ... 74
FIGURE 28. INTERACTION BETWEEN ROBOT AND ENVIRONMENT FOR REGISTERING ROBOT

... 75
FIGURE 29. INTERACTION BETWEEN CONTROL PANEL AND ENVIRONMENT FOR SETTING

PARAMETERS.. 76
FIGURE 30. INTERACTION BETWEEN ROBOT AND ENVIRONMENT FOR MESSAGE PASSING.. 82
FIGURE 31. PHASE TIME BREAKDOWNS... 87
FIGURE 32. PROJECT WORK BREAKDOWNS ... 87

 vii

FIGURE 33. PHASE I WORK BREAKDOWN DIAGRAM.. 88
FIGURE 34. PHASE II WORK BREAKDOWN DIAGRAM... 88
FIGURE 35. PHASE III WORK BREAKDOWN DIAGRAM. .. 89
FIGURE 36. REDESIGNED – COMMUNICATION MODEL CLASS DIAGRAM........................... 92
FIGURE 37. REDESIGNED – REGISTER ROBOT SEQUENCE DIAGRAM.................................. 93
FIGURE 38. REDESIGNED – SEND MESSAGE SEQUENCE DIAGRAM 94
FIGURE 40. REDESIGNED – COMMUNICATIONSSYSTEM SEND POINT-TO-POINT MESSAGE

SEQUENCE DIAGRAM ... 96
FIGURE 41. REDESIGNED – RECEIVE MESSAGE SEQUENCE DIAGRAM 97
FIGURE 42. REDESIGNED – SET PARAMETER SEQUENCE DIAGRAM................................... 98
FIGURE 43. REDESIGNED – GET TIME STEP AND DISTANCE SEQUENCE DIAGRAM 99
FIGURE 44. USE OBJECT DIAGRAM – UNIQUENAME CONSTRAINT................................. 109
FIGURE 45. USE OBJECT DIAGRAM – BROADCASTABILITY1 CONSTRAINT 111
FIGURE 46. USE OBJECT DIAGRAM – BROADCASTABILITY2 CONSTRAINT 112
FIGURE 47. USE OBJECT DIAGRAM – P2PABILITY1 CONSTRAINT 114
FIGURE 48. USE OBJECT DIAGRAM – P2PABILITY2 CONSTRAINT 115
FIGURE 49. USE OBJECT DIAGRAM – SENDABILITY CONSTRAINT 117
FIGURE 50. USE OBJECT DIAGRAM – RECEIVEABILITY CONSTRAINT 118
FIGURE 51. USE OBJECT DIAGRAM – RIGHTQUEUE CONSTRAINT.................................. 120
FIGURE 52. USE OBJECT DIAGRAM – PRIOTITYQUEUE CONSTRAINT 122
FIGURE 53. USE OBJECT DIAGRAM – RIGHTTIME CONSTRAINT..................................... 123
FIGURE 54. USE OBJECT DIAGRAM – ALLLINKSHUTDOWN CONSTRAINT...................... 124
FIGURE 55. USE OBJECT DIAGRAM – SENDTOYOURSELF CONSTRAINT 125

 viii

LIST OF TABLES

TABLE 1. FEATURES TO BE TESTED .. 39
TABLE 2. FORMAL TECHNICAL INSPECTION CHECKLIST.. 50
TABLE 3. TESTING RESULT SUMMARY .. 65
TABLE 4. SYSTEM PARAMETER DESCRIPTION TABLE. ... 77
TABLE 5. ROBOT PARAMETER DESCRIPTION TABLE.. 77
TABLE 6. EXPECTED AND ACTUAL FINISH TIME FOR EACH PHASE 86
TABLE 7. FORMAL TECHNICAL INSPECTION CHECKLIST - KEVIN 129
TABLE 8. FORMAL TECHNICAL INSPECTION CHECKLIST - ESTEBAN................................ 130

 1

CHAPTER 1

PROJECT OVERVIEW

1. Background
Cooperative Robotics Simulator is a research project in Computing and Information
Sciences department at Kansas State University (KSU). The objective of Cooperative
Robotics Simulator is to perform simulations of many heterogeneous types of robots all
working within a single, virtual environment. The main components of this project are
Robot Simulator, Environment Control Panel and Environment Simulator.

Robot simulator consists of three parts: a robot hardware simulator, a robot control
program, which will be user supplied, and an environment-based robot object. Robot
control program can work with various robot hardware simulators via standard API. The
robot hardware simulator will interface to the environment via requests for data from its
sensor or requests for action from its actuators. The environment-based robots will be
responsible for controlling the individual sensors, based on robot hardware simulator
requests, and providing the appropriate data to the sensors.

Environment control panel will be a standalone system that connects to the environment
simulator to monitor and control the current simulation.

The environment simulator is the central component in the system. The environment
simulator is responsible for keeping track of the actual state of the environment, including
each robot. The environment simulator receives requests from simulated robots to read
sensors, initiate actuators, and to send and receive communication.

 2

Robot Simulator

Robot User Interface

Robot Control Code

Hardware Simulator API

Robot Hardware
Simulator

Communication
Model

Environment
Control Panel

Environment Simulator

EnvSim
Controller

3-D Environment Model

Scenario Script

Scenario Output

Generalize

Environment Model

Figure 1. Cooperative Robots Simulator

2. Project Overview
The main focus of this MSE project is to provide basic communication between robot
simulators. The Communication Model will be responsible for handling message passing
between simulated robots. It will take requests to send messages to other robots and pass
them to the correct robot depending on what method of communication. There are two
types of communications; broadcast and point-to-point communication. Broadcast and
point-to-point communication with appropriate delays will be developed to provide a
fundamental communication between simulated robots. Furthermore, point-to-point
communication will be extended by include range restriction to support wireless
communication. Communication model will also provide an interface to environment
control panel to simulate broken links, delay time, range limit and message delivery
probability for each robot.

3. Goal
Develop communication capability in Cooperative Robotics Simulator in order to provide
a basic communication between simulated robots.

4. Features
4.1 Provide broadcast and point-to-point communication.
4.2 Allow simulated robots to choose method of communication between broadcast and

point-to-point communication

 3

4.3 Allow environment control panel to start up or shutdown link between robot
simulators.

4.4 Allow environment control panel to set delay time.
4.5 Allow environment control panel to set range limit for point-to-point communication.
4.6 Allow environment control panel to set message delivery probability for each robot.

** The environment control panel will access the interface via environment.

5. Constraints
5.1 This project will support capable of running in distributed manner, or on a single

machine.
5.2 This project will be developed in Java using standard libraries. It should run in all

JDK compliant platforms.

 4

CHAPTER 2.

SOFTWARE REQUIREMENT SPECIFICATION

1. Introduction

1.1 Purpose
The purpose of this document is to define functionality of “Communication Model for
Cooperative Robotics Simulators” project. The intended audiences are major project
professor and project committees.

1.2 Scope
This document covers the requirement specification of “Communication Model for
Robotics Simulator”. The Communication Model for Robotics Simulator will provide
fundamental communication for simulated robot to pass messages between simulated
robots. The fundamental communication method consists of broadcast and point-to-point
communication.

1.3 Definitions, acronyms and abbreviations
1.3.1 Broadcast communication refers to one-to-many communication which message

is originated in one site and distributed to all simulated robots within the same
local area network.

1.3.2 Point-to-point communication refers to one-to-one communication which each
message has only one specified destination address.

1.3.3 Propagation delay refers to the time lag between the departure of a signal from the
source and the arrival of the signal at the destination.

1.3.4 Range limit refers to the longest range which each simulated robot can
communicate with others simulated robots.

1.3.5 JDK or A Java Development Kit is a program development environment for
writing Java applications.

1.4 Overview
The rest of this document provides more detail in requirement specification of this
software. Section 2 describes overall description including product perspective, product
functions, user characteristics, constraints and assumptions. Section 3 provides specific
requirement and critical use-case diagram.

2. Overall description

2.1 Product Perspective

This project is a part of “Cooperative Robotics Simulators” research project at CIS
department, Kansas State University. The Cooperative Robotics Simulators consists of

 5

three main components, Robot Simulator, Environment Control Panel and Environment
Simulator. It requires an interface between communication model and environment
simulator. This interface provides communication for simulated robots and provides the
ability for environment control panel to set some variables for the communication model,
which are propagation delay time, broken links, range limit, and message delivery
probability of each simulated robot and for the entire system. The environment simulator
is the central component for Robot Simulator and Environment Control Panel to connect
to Communication Model.

Environment Control Panel

Environment

Robot Simulator

Robot Hardware Simulator

Communication
Model

Figure 2. Interfaces between communication model and the other components of the

Cooperative Robotics Simulator System.

2.2 Product functions
2.2.1 Provides broadcast communication for simulated robot to send messages within

local area network.
2.2.2 Provides point-to-point communication for simulated robot to send messages to

another robot.
2.2.3 Allow simulated robots to choose communication methods, which are broadcast,

and point-to-point communication.
2.2.4 Allow Environment Control Panel to define propagation delay time.
2.2.5 Allow Environment Control Panel to simulate broken links.
2.2.6 Allow Environment Control Panel to define range limit for each simulated robot.
2.2.7 Allow Environment Control Panel to set message delivery probability for each

robot and for the entire system.
 ** The environment control panel will access the interface via environment.

2.3 User characteristic
The intended user for this software is developer of the Cooperative Robotics Simulator
who participates in the component related to communication.

 6

2.4 Constraints
2.4.1 This project will be designed to provide capability of running in distributed

manner, or on a single machine.
2.4.2 The project will be developed in Java using standard libraries.
2.4.3 The project should run on all JDK complaint platforms.
2.4.4 The design of the project should not rule out the web interface capability.

3. Specific requirements

3.1 Use cases

3.1.1 Primary High-Level, Use-Case diagram

Environment

Send message

Set up Parameters

Register

Get message

Figure 3. Use-Case Diagram for the Primary, High-Level, Use Cases of the
Communication Model for Cooperative Robotics Simulator.

• Register
Simulated robot registers to the system before starting communication sessions to allow
communication model knows about robots and set some start-up parameters such as
having only some types of communication.

• Send message
Simulated robot has a request to send messages to the other simulated robots within the
same local network.

• Get message
Simulated robot has a request to get messages from the system.

 7

• Set up parameter
Environment can set the communication parameters, which will be used to control the
communication between simulated robots

3.1.2 Primary Low-Level Use-Case diagram
3.1.2.1 Send message Use Case

Environment

Send message

Send broadcast
message

Send
point-to-point message

Get parameter info

<<include>>

Figure 4. Use-Case Diagram for the Primary Low-Level Use Cases Detailing the
Low-Level Use Cases Associated with the High-Level Send message Use Case.

• Send broadcast message

Simulated robots can send broadcast message along the local network, which can receive
by all simulated robots in the same network.

• Send point-to-point message

Simulated robot can send message directly to another robot.

• Get parameter info

Both send broadcast message and send point-to-point message will send message depend
on the communication parameter such as delay time, broken link and range limit.

 8

3.1.2.2 Set up parameters Use Case

Set up Parameters

Environment
Set delay time

Start up/shutdown
link Set range limit

Set message
delivery probability

Figure 5. Use-Case Diagram for the Primary Low-Level Use Cases Detailing the
Low-Level Use Cases Associated with the High-Level Set up parameters Use Case.

• Set delay time

Environment can set delay time, which will create a time lag between the source and the
destination. Delay time can set between each pair of robots or for the entire system.

• Start up / shutdown link
Environment can start up and also shutdown the communication link for each robot. The
link can be activate for send only or receive only or both of them. The communications
will success only sending the messages through active link

• Set range limit
Environment can set the range limit, which is the longest destination that each simulated
robot can send a message.

• Set message delivery probability
Environment can set the message delivery probability to simulate message loss in the
network.

3.2 Requirements
Register Robot

3.2.1 *Communication model shall support the ability to register robot to the system.
3.2.2 *Communication model shall support the ability to set communication method to

each robot after registering. There are two types of communication, broadcast
communication and point-to-point communication.

Send broadcast message

3.2.3 *Communication model shall support the ability to send broadcast message.
3.2.4 *Communication model shall support the ability to receive broadcast message.
3.2.5 *Only simulated robot that has broadcast capability shall send or receive

broadcast message.

 9

3.2.6 *Simulated robots with active send link shall send broadcast message to other
robots.

3.2.7 *Only simulated robot with active receive link shall receive broadcast
communication.

3.2.8 Broadcast communication shall support the ability to delay message before
sending out.

Send point-to-point message

3.2.9 *Communication model shall support the ability to send point-to-point message.
3.2.10 *Communication model shall support the ability to receive point-to-point

message.
3.2.11 *Only simulated robot that has point-to-point capability shall send or receive

point-to-point message.
3.2.12 *Point-to-point communication shall delivery to only one simulated robot

specified by a destination address.
3.2.13 *Simulated robots with active send link shall send point-to-point message to only

robot with active receive link
3.2.14 *Only simulated robot with active receive link shall receive point-to-point

message.
3.2.15 Point-to-point communication shall support the ability to delay message before

sending out.
3.2.16 Simulated robots with range restriction shall send and receive messages within

range limit.

Set up parameters

3.2.17 *Communication model shall support the ability to start up or shutdown all the

communication links or each robot. It shall support the ability to
activate/deactivate send link only, receive link only or both of them.

3.2.18 Communication model shall support the ability to set delay time for each robot or
the entire system.

3.2.19 Communication model shall support the ability to set range limit for each
simulated robot or the entire system.

3.2.20 Communication model shall support the ability to set message delivery
probability for each robot and for the entire system.

The item with * indicates the critical requirements.

 10

CHAPTER 3

PROJECT PLAN

1. Introduction
This document provides an overview of project plan for Communication Model for
Cooperative Robotics Simulator project.

1.1 Purpose
The purpose of this document is to provide a project plan, cost estimation and
architecture elaboration plan of “Communication Model for Cooperative Robotics
Simulator” project.

1.2 Scope
This document covers project plan for “Communication Model for Cooperative Robotics
Simulator” including project schedule, cost estimation and architecture elaboration plan.
Project plan will detail the phases, iterations, and milestones that will comprise the
project. Cost estimation will provide detailed estimate on the size, cost and effort
required for the project. The Architecture Elaboration plan will define the activities and
actions that must be accomplished prior to the Architecture Presentation.

2. Project schedule

Phase I Inception Phase February 2 – February 27

 Study on material of presentation 1 February 2 – February 3
 Project Plan February 4 – February 6
 Project overview February 4 - February 5
 Software Quality Assurance February 4 – February 5
 Architecture elaboration plan February 5 –February 6
 Software Requirements Specifications February 9 – February 11
 Cost Estimation February 10 – February 11
 Software demo February 10 – February 13
 First Presentation slides February 16 – February 17
 First presentation February 27

Phase II Elaboration Phase February 26 – April 26

 Review formal requirement specification February 26 – February 27
 Refine vision document February 27 – March 1
 Architecture design March 4 – March 10
 Formal requirement specification March 16 – March 23
 Executable architecture prototype March15 –March 22

 11

 Inspector checklist March 23 – March 24
 Implementation plan March 29 – March 31
 Updated project plan April 1 – April 2
 Updated cost estimation April 5 – April 6
 Test plan April 6 – April 12
 Second Presentation slides April 21 – April 22
 Second presentation April 26

Phase III Construction Phase June 23 – August 19

 Modify Phase II document June 23 – June 29
 Create component diagram June 29 – July 7
 Coding July 8 – July 13
 Testing July 14 – July 28
 User manual July 29 – July 30
 Project evaluation August 2 – August 6
 Final presentation slides August 9 – August 10
 Prepare final documentation August 11 – August 12
 Final presentation August 19

3. Cost Estimation
3.1 Function Point Analysis
First, Function Point Analysis is used to estimate number lines of code. The project’s
features are classified into five categories, inputs, outputs, inquiries, files and interfaces.
The whole process of FPA consists of three major parts, which are calculating
Unadjusted Function Points (UFP), calculate Adjusted Function Point (AFP) and
calculate SLOC

3.1.1 Calculate Unadjusted Function Points

Measurement Parameters Simple Average Complex Total
Input Sign on request 3
 Request to send messages. 3
 Request to start up/ shutdown links 3
 Set up parameters 3

12

Outputs Success or failure to sign on 4 13
 Success or failure to set parameters. 4
 Distribute messages to all recipients 5
Inquiries 0
Files 0
External
Interfaces

 0

Total Unadjusted Function Points 25

 12

3.1.2 Calculate Adjusted Function Points
To compute Adjusted Function Points, the following equation is used.

FP = Unadjusted Function Points * (0.65 + 0.01 * Σ Fi)
(where Fi are complexity adjustment factors)

The system is rated on a set of complexity adjustment factors on a scale from 0 to 5
where 0 is no influence and 5 is essential.

Complexity Adjustment Factors Value
Are data communications required 5
Is the code designed to be reusable 3
Total Complexity Adjustment Factors 8

Therefore, total Adjusted Function Points is 25 * 0.73 = 18.25

3.1.3 Calculate number of lines of code (SLOC)
Language factor of Java programming is 50. Therefore, SLOC = 21.17 * 50 = 912.5 or
0.9125 KSLOC

3.2 COCOMO I

COCOMO or COnstructive COst Model developed by Barry Boehm will be used to
estimate total cost the project in terms of time and effort, since COCOMO II is used
widely in large development team. The cost estimation is based on that this project is
uncomplicated; therefore the organic mode cost estimation relationship will be used.

Effort = 3.2 * EAF * (Size) 1.05

where:
 Effort = number of person-months

EAF = an effort adjustment factor that characterizes the domain,
personnel, environment, and tools used to produce the artifacts of the
process. (Since EAF is difficult to determine, EAF is not considered at this
time.)
Size = size of the end product (in human-generated source code),
measured by the number of delivered source instructions.(in KSLOC)

Effort = 3.2 * (0.9125) 1.05
Effort = 2.90 person-months

Time = 2.5 * (Effort) 0.38

 where:
 Time = total number of months

Time = 2.5 * 2.90 0.38
Time = 3.74 months

 13

In conclusion, this project requires one person to complete in 3.74 months. As Boehm
mentioned, there are 152 working hours in a month. However number of working hours
per person in a month is varied, time to complete this project will be different.

4. Architecture Elaboration Plan

4.1 Purpose
The Architecture Elaboration Plan will define the activities and actions that must be
accomplished before the Architecture Presentation.

4.2 Updated Vision Document
The Vision documents, project overview and Software Requirements Specifications, will
be updated with any modification based on the project committees’ suggestion. The
requirements will be ranked according to importance and a set of critical requirements
will be identified.

4.3 Updated Project Plan
The project plan will be adjusted with any modification, corrected phase and deliverables
along with the estimated completion date.

4.3.1 Cost Estimation
The cost estimation will be updated on the size, cost and effort required for the project
implementation

4.3.2 Implementation Plan
The Implementation Plan will be developed to define the activities that must be
accomplished during implementation.

4.4 Architecture Design
The complete architecture design will be documented using UML diagram such as class
diagram, object diagram and sequence diagram.

4.5 Formal Requirement Specification
The class diagram from architecture design will be formally specified using UML/OCL
methodology. The USE tool, a UML-based Specification Environment, will be used to
implement UML/OCL.

4.6 Test Plan
The test plan will be developed to address the required tests to show that the product
satisfies the requirements. Evaluation criteria for all critical requirements will be
included in the test plan.

 14

4.7 Formal Technical Inspection
The class diagram will be subjected to a formal technical inspection by two MSE students
(inspectors), Esteban Guillen and Kevin Sung. Each inspector will provide a report on
the result of his/her inspection that will be documented.

4.8 Executable Architecture Prototype
An executable prototype will be built in one or more iterations. The prototype will
identify all the critical requirements, which is addressed in the vision document.

 15

CHAPTER 4

SOFTWARE QUALITY ASSURANCE PLAN

1. Purpose
The objective of this document is to define the Software Quality Assurance Plan of the
“Communication Model for Cooperative Robotics Simulator” which will be used
throughout the software life cycle.

2. Reference Documents
• IEEE Guide for Software Quality Assurance Planning Std 730.1-1995.
• IEEE Standard for Software Quality Assurance Plans Std 730-1998.

3. Management

3.1 Organization
The organization of this project consists of a major professor, two committees, a
developer, which is MSE student and two formal technical inspectors.

Major Processor
Dr. William H. Hsu

Committee
Dr. Scott A. DeLoach
Dr. William J. Hankley

Developer
Acharaporn Pattaravanichanon

Formal Technical Inspector
 Esteban Guillen

Kevin Sung

3.2 Tasks
All the tasks in three phases: inception, elaboration and construction phase, to be
performed in this project will be delineated in project plan.

3.3 Responsibilities
Major professor and committees are responsible for participating in three presentations
and demonstrations given by the developer, give suggestion and provide feedback. In
addition, major Professor will supervise, evaluate and approve every task done by the
developer.

Developer will responsible for the entire task in developing this project throughout the
software life cycle including planning, designing, implementation and documentation.
The developer will responsible for scheduling the time for reviewing with major

 16

professor and committees for all three phases. Furthermore, the developer will perform
all tasks under the supervision of the major professor and suggestion of committees.

Formal Technical Inspectors will responsible for reviewing the architecture design
artifact and submit a report, which will contain cover letter and a formal checklist that
prepared by the developer.

4. Documentation

4.1 Purpose
The main purpose of the documentation is to ensure the development, verification and
validation, use and maintenance of the software. The required documents are followed
according to the MSE portfolio guideline for MSE student at CIS department of Kansas
State University.

4.2 Minimum documentation requirements

4.2.1 Software Requirement Specification (SRS)
The SRS will describe the essential functionality of the software and external interfaces.
The SRS can be modified in architecture phase to ensure that all the essential
requirements are included.

4.2.2 Software Design Description (SDD)
SDD depicts how the software will be structured to satisfy the requirements in the SRS.
It describes components and subcomponent of software design. Object diagram, class
diagram and sequence diagram will be created using Rational Rose.

4.2.3 Project Plan
Project Plan will delineate time period, job and milestone. It can be adjusted in each
phase to present the actual status of the project.

4.2.4 Software Test Plan
Software Test Plan will address the required test to show that the product satisfies the
requirements.

4.2.5 Project Evaluation
The development process will be reviewed and evaluated including the accuracy of the
estimation and the usefulness of the methodologies.

4.2.6 User Manual
User Manual will provide an overview, user commands, error messages and data formats.

All documents will be posted on the developer web page before presentation of each
phase.

 17

5. Standard, Practices, Conventions and Metrics

5.1 Purpose
This section describes the standards, practice, conventions and metrics used in
Communication Model for Cooperative Robotics Simulator project.

5.2 Content

5.2.1 Documentation Standards
The IEEE standards will be used to develop some documents (where applicable). All
documents will have brief explanation describing purpose of the document and version
number, which will be increased by 0.1.

5.2.2 Logic Structure Standards
UML notation will be used for the analysis and design documents such as use case
diagram, class diagram and sequence diagram.

5.2.3 Coding Standards
The software will use all standards coding practices; for examples the indent for each
control structure, embedded standard comment.

5.2.4 Testing Standards
Unit testing, integration testing and acceptance testing will be conducted during testing
process. All modules must pass unit testing before doing integration testing. Acceptance
testing will be based on the evaluation criteria, which are outlined in test plan.

6. Reviews and Audits

6.1 Purpose
All documentation and software produced during the project will be subjected to regular
reviews to ensure the highest level of correctness and quality. This section describes how
the reviews and audits are accomplished.

6.2 Minimum Requirements
The three presentations will be conducted during the software development process. All
documents for presentation must be submitted to major professor and committees at least
one week before presentation. Moreover, there are two formal technical inspectors,
which are MSE students. They will participate in reviewing architecture. The formal
technical inspectors will provide a review report, which will be one of the required
documents of the final presentation.

 18

7. Test
The test plan will provide all the test activities, evaluation criteria, unit testing, system
integration testing, and acceptance testing. All tests must meet the evaluation criteria.
The test report will provide all test conducted and test result.

8. Problem Reporting and Corrective action
Problem that occurs during the software development will be logged for tracking,
resolving and reporting. Only critical problem that impact the project progression will be
reported to major professor the others will be resolved, recorded and informed to major
professor.

9. Tools, techniques, and methodologies
UML notation is used for the analysis and design documents using Rational Rose 2002.
Microsoft Project will be used for creating project plan. Eclipse will be used for software
development.

10. Code control
The developer uses her own computer and maintains her software version using several
subdirectories. The code and the binary files will be organized in different directories.
The backup copies will be created every week on CD-ROM.

11. Training
CIS771 Software Specification
CIS748 Software Management
CIS740 Software Engineering
Furthermore, the developer will responsible for doing research about the system. The
major professor and committees will provide additional knowledge of the system.
Attending in weekly meeting of the Cooperative Robots Simulator research group will
help in deeply understand of the system.

 19

CHAPTER 5

ARCHITECTURE DESIGN

1. Introduction
The purpose of this document is to provide architecture design including class diagram,
class diagram description, sequence diagram and sequence diagram description of
“Communication Model for Cooperative Robotics Simulator”. The architecture design is
based on the Software Requirement Specification Version 1.1.

2. Class Diagram
There are eight classes in the system. The CommunicationsSystem class is served as a
main interface, which interact with the environment. It provides function for robot and
environment control panel.

The functions for robot are used to communicate with other robots, which are
registerRobot, sendMessage and getMessage. Each simulated robot needs to register to
the communication model to initiate the communication session and set what
communication type is allowed, broadcast or point-to-point. When the environment takes
requests from robot, it will pass them to the communication model by calling
sendMessage in every time step. After communication model gets request to send
message from the environment, it will process the message and add it to the receiver’s
priority queue. Same as sendMessage, the environment will call getMessage in every
time step and pass the returned messages to the specified robot.

On the other hand, the functions for environment control panel are used to set robot’s and
system’s parameter. The system parameters include system link status, system range,
system delay and system delivery probability. The robot parameters are incoming and
outgoing link status, maximum sending range, delay, delivery probability, broadcast and
point-to-point ability.

The RobotCommRecord class is used to keep current robot parameter. Each
RobotCommRecord has its own priority queue to keep messages, which will be retrieved
when getMessage function is called. In other words, priority queue keeps a list of
messages, which will be delivered to the corresponding robot

The PriorityQueue class keeps a set of messages ordered by receivedTime. After
messages are delivered, they will be removed from the queue.

Since some parameters are defined as a value for each pair of robot, the RobotParameter
class is created to keep the parameter for the owner robot and the other robots.

 20

The Message class defines the sender, receiver, message content, sent time and received
time. The sent time is the time step that message is sent by the environment to the
communication model. The received time is the expect time step that robot will get the
message.

RobotParameter
receiverName : String
delayTime : Integer
deliveryProb : Integer

CommunicationsSystem
delay : Integer
range : Integer
deliveryProb : Integer
isLinkEnabled : Boolean

Message
sender : String
receiver : String
content : Object
receivedTime : Integer
sentTime : Integer

RobotCommRecord
name : String
range : Integer
isSendLinkEnabled : Boolean
isReceiveLinkEnabled : Boolean
isBroadcastEnabled : Boolean
isP2PEnabled : Boolean

0..n

1+hasParameters

0..n

+parameterOwner

1

0..n

1

+robots0..n

+belongTo1

PriorityQueue

PriorityQueue()
add(msg : Message) : Boolean
get(index : Integer) : Message
remove(index : Integer) : Message
isEmpty() : Boolean

0..n

0..n

+hasMessages0..n

+inQueue0..n

1

1

+queueOwner 1

+hasQueue 1

{ordered}

Figure 6. Communication Model for Cooperative Robotic Simulator Class Diagram

 21

3. Sequence diagram
This section shows the sequence diagrams of the basic scenarios of Communication
Model, which are register robot, send message and get message. The send message
scenario includes two cases: sending broadcast and sending point-to-point

3.1 Register robot

After every robot registers to the environment, the environment will send the request to
register robot with robot name and communication type to the CommunicationsSystem.
If this robot name does not exist in the system, RobotCommRecord object will be created
and set name as robot name. Then it will create their own priority queue and set
communication ability: broadcast, point-to-point or both depends on the communication
type.

 : Environment :
CommunicationsSystem

 :
RobotCommRecord

 : PriorityQueue

registerRobot(name,commType)

setCommType(commType)

RobotCommRecord(name,commType)

PriorityQueue()

Figure 7. Register Robot Sequence Diagram

 22

3.2 Send message (broadcast)

Environment sends a request to send message with message and time step as parameters.
If the system link is enabled, then it will check if this sender has the ability to send
broadcast message. If the sender has ability to send broadcast message, it will check each
robot in the system if they qualify to get this broadcast message. If they qualified, the
message will be added to their priority queue.

 :
RobotCommRecord : Environment : CommunicationsSystem : Message :

RobotParameter
 : PriorityQueue

Iterate for every
robotCommRecord

sendMessage(msg,timeStep)

isLinkEnabled()

setSentTime(time)

getSender()

sender

setReceivedTime(time)

addMsgToQueue(msg)

isSendBroadcastEnabled()

isReceiveBroadcastEnabled()

getRange()

getDeliveryProb(receiver)

getDelay(receiver)

true

true

getDeliveryProb()

getDelay()

add(msg)

distance(sender,receiver)

getName()

receiver

distance

Figure 8. Send Message (Broadcast Message) Sequence Diagram

 23

3.3 Send message (point-to-point)

Environment sends a request to send message with message and time step as parameters.
If the system link is enabled, then it will check if this sender has the ability to send point-
to-point message. If the sender has ability to send point-to-point message, it will check if
the receiver qualifies to get this message. If it qualifies, the message will be added to the
priority queue.

 : Environment :
CommunicationsSystem

 : Message :
RobotCommRecord

 : PriorityQueue :
RobotParameter

sendMessage(msg,timeStep)

isLinkEnabled()

setSentTime(time)

getSender()

sender

getReceiver()

receiver

setReceivedTime(time)

isSendP2PEnabled()

true

isReceiveP2PEnabled()

true

getRange()

getDelay(receiver)

getDeliveryProb(receiver)

addMsgToQueue(msg)

add(Message)

getDeliveryProb()

getDelay()

distance(sender,receiver)

distance

Figure 9. Send Message (Point-to-point Message) Sequence Diagram

 24

3.4 Get message

Environment sends request to retrieve message for each robot in every time step. The
system will retrieve the messages which has received time equals to time step from the
robot’s priority queue.

 : Environment :
CommunicationsSystem

 :
RobotCommRecord

 : PriorityQueue : Message

getMessage(name,timeStep)
getMessage(timeStep)

isEmpty()

false

get(index)

msg

getReceivedTime()

receivedTime

remove(index)

msg

if (receivedTime == timeStep)

Iterate until
receivedTime >
timeStep

msg[]

msg[]

Figure 10. Get Message Sequence Diagram

 25

4. Class Description
This section provides class description in detail.

4.1 CommunicationsSystem
This class is the main interface of the system, which provides a set of methods used by
Environment. The environment uses the interface for sending/receiving messages and
passes them to the targeted robot. The environment also uses a set of methods to set and
get parameter values and pass to environment control panel. The parameters are system
parameters, and robot parameters. This class also used to keep system parameter
including range, link, delivery probability and delay.

CommunicationsSystem
delay : Integer
range : Integer
deliveryProb : Integer
isLinkEnabled : Boolean

CommunicationsSystem()
registerRobot(name : String, commType : String) : Boolean
getMessage(name : String, timeStep : Integer) : Message[]
sendMessage(message : Message, timeStep : Integer)
processBroadcast()
processP2P()
distributeMessages()
getRobotCommRecord() : RobotCommRecord
setDelay(delay : Integer)
setRange(range : Integer)
setDeliveryProb(prob : Integer)
startupAllLink()
shutdownAllLink()
setRobotDelay(sender : String, receiver : String, delay : Integer)
setRobotRange(name : String, range : Integer)
setRobotDeliveryProb(sender : String, receiver : String, prob : Integer)
startupSendLink(name : String)
startupReceiveLink(name : String)
shutdownSendLink(name : String)
shutdownReceiveLink(name : String)
isLinkEnabled() : Boolean

Figure 11. CommunicationsSystem class with attributes and operations.

4.2 RobotCommRecord
This class is used to keep robot parameters, which are range, active link, delivery
probability, delay, and broadcast or point-to-point ability. It provides methods to set
these parameters. In addition, it validates each incoming message, and distribute
message to the specified robot.

 26

RobotCommRecord
name : String
range : Integer
isSendLinkEnabled : Boolean
isReceiveLinkEnabled : Boolean
isBroadcastEnabled : Boolean
isP2PEnabled : Boolean

RobotCommRecord(name : String, commType : String)
getMessage(timeStep : Integer) : Message[]
startupSendLink()
startupReceiveLink()
shutdownSendLink()
shutdownReceiveLink()
enableBroadcast()
enableP2P()
disableBroadcast()
disableP2P()
isSendLinkEnabled() : Boolean
isReceiveLinkEnabled() : Boolean
isBroadcastEnabled() : Boolean
isP2PEnabled() : Boolean
isSendBroadcastEnabled() : Boolean
isReceiveBroadcastEnabled() : Boolean
isSendP2PEnabled() : Boolean
isReceiveP2PEnabled() : Boolean
getRobotParameter() : RobotParameter
getDelay(name : String) : Integer
getRange() : Integer
getDeliveryProb(name : String) : Integer
addMsgToQueue(msg : Message) : Boolean
setCommType(commType : Integer)

Figure 12. RobotCommRecord class with attributes and operations.

4.3 RobotParameter
It keeps the parameters for each pair of robot (the owner and the other robots).

RobotParameter
receiverName : String
delayTime : Integer
deliveryProb : Integer

RobotParameter()
getReceiverName() : String
getDelay() : Integer
getDeliveryProb() : Integer
setReceiverName(name : String)
setDelay(delay : Integer)
setDeliverProb(prob : Integer)

Figure 13. RobotParameter class with attributes and operations.

 27

4.4 PriorityQueue
This class is the priority queue, which will keep outgoing messages (in terms of this
system, but it is the incoming message for robot) ordered by received time. It also
provides method to add and remove from queue.

PriorityQueue

PriorityQueue()
add(msg : Message) : Boolean
get(index : Integer) : Message
remove(index : Integer) : Message
isEmpty() : Boolean

Figure 14. PriorityQueue class with attributes and operations.

4.5 Message
This class defines the field use to communicate between robots including sender,
receiver, sent time, received time, and message content.

Message
sender : String
receiver : String
content : Object
receivedTime : Integer
sentTime : Integer

Message()
setSender(name : String)
setReceiver(name : String)
setContent(content : Object)
setReceivedTime(time : Integer)
setSentTime(time : Integer)
getSender() : String
getReceiver() : String
getContent() : Object
getReceivedTime() : Integer
getSentTime() : Integer
isBroadcastMessage() : Boolean
isP2PMessage() : Boolean

Figure 15. Message class with attributes and operations.

 28

5. CommunicationsSystem State Diagram
The State Diagram shows the possible ways in which the objects respond to events,
which occur in the system. There are five states in the CommunicationsSytem State
Diagram, wait, registering, sending, sending broadcast, sending point-to-point, adding to
queue and getting message.

Initialization

CommunicationsSystem()

Wait

event startupSendLink(name)/ ^RobotCommRecord.startupSendLink()
event startupReceiveLink(name)/ ^RobotCommRecord.startupReceiveLink()
event shutdownSendLink(name)/ ^RobotCommRecord.shutdownSendLink()
event shutdownReceiveLink(name)/ ^RobotCommRecord.shutdownReceiveLink()
event setRobotDelay(sender,receiver,delay)/ ^RobotCommRecord.setDelay(delay)
event setRobotRange(name,range)/ ^RobotCommRecord.setRange(range)
event setDeliveryProb(sender,receiver,prob)/ ^RobotCommRecord.setDeliveryProb(prob)

Registering

entry/ R̂obotCommRecord.setCommType(commType)

Sending
Message

Sending broadcast
message

entry/ processBroadcast()
entry/ distributeMessage() Sending point-to-point

message
entry/ processP2P

[isBroadcastMessage]

[isP2PMessage]

Adding To queue

entry/ ^RobotCommRecord.addMsgToQueue(msg)

Getting Message

entry/ ^RobotCommRecord.getMessage(timeStep)

sendMessage(msg,timeStep)

getMessage(name,timeStep)registerRobot(name,commType) ^RobotCommRecord(name,commType)

Figure 16. CommunicationsSystem State Chart Diagram.

 29

CHAPTER 6

FORMAL REQUIREMENT SPECIFICATION

1. Introduction
The purpose of this document is to provide formal requirement specification of
“Communication Model for Cooperative Robotics Simulator”. This specification uses
UML/OCL methodology. The constraint and variant in the specification are based on the
critical requirement as stated in the Software Requirement Specification Version 1.1 and
Class Diagram presented in Architecture Design Version 1.0. Furthermore, we use the
UML- based Specification Environment (USE) tool to check the type and syntax to
ensure correctness of the specification.

2. Scope
In the specification, the variant, pre and post condition of interest properties are defined
to ensure that these properties will hold in the system model. These properties are:

• Robot has unique name.
• Only robot with broadcast ability can send and receive broadcast message.
• Only robot with point-to-point ability can send and receive point-to-point

message.
• Only robot with active send link can send message.
• Only robot with active receive link can receive message.
• Messages are kept into the right queue.
• Messages are kept in priority queue ordered by received time.
• If message’s received time is defined, then received time is equal or greater than

sent time.
• If all links are shutdown, robot cannot send or receive message.
• Robots cannot receive their own sending message.

3. Formal Specification Description
This section explains the Communication Model component specification based on Class
diagram presented in Architecture Design Version 1.0

3.1 Classes

3.1.1 CommunicationsSystem class
There is one attribute in this class, which is isLinkEnabled, used to keep status of the
system link. RegisterRobot is the operation used for registering a robot to the
communication model and set type of communication that will be allowed for this robot.
This operation has two parameters, n-robot name and c-communication type. There are

 30

three possible values of communication type, 1 – broadcast communication, 2 – point-to-
point communication and 3 – both.

class CommunicationsSystem
attributes
 delay : Integer
 range : Integer
 deliveryProb : Integer
 isLinkEnabled : Boolean
operations
 registerRobot(n:String,c:Integer)
 getMessage(n:String,timeStep:Integer):Set(Message)
 sendMessage(msg:Message,timeStep:Integer)
 processBroadcast()
 processP2P()
 distributeMessage()
 getRobotCommRecord():RobotCommRecord
 setDelay(delay:Integer)
 setRange(range:Integer)
 setDeliveryProb(prob:Integer)
 startupAllLink()
 shutdownAllLink()
 setRobotDelay(sender:String,receiver:String,delay:Integer)
 setRobotRange(name:String,range:Integer)
 setRobotDeliveryProb(sender:String,receiver:String,prob:Integer)
 startupSendLink(name:String)
 startupReceiveLink(name:String)
 shutdownSendLink(name:String)
 shutdownReceiveLink(name:String)
 isLinkEnabled():Boolean
end

3.1.2 RobotCommRecord class
The attributes of this class are name, range, isSendLinkEnabled, isReceivedLinkEnabled,
isBroadcastEnabled and isP2PEnabled. The attribute name is used for storing name of
robot. Range is used for keeping the maximum sending range. The attribute
isSendLinkEnabled is used for storing the status of the outgoing link of the robot. The
attribute isReceiveLinkEnabled is used for storing the status of the incoming link of the
robot. The attribute isBroadcastEnabled is used for storing if broadcast communication is
allowed for this robot. Finally, the attribute isP2PEnabled is used for storing if point-to-
point communication is allowed for this robot.

class RobotCommRecord
attributes
 name : String
 range : Integer
 isSendLinkEnabled : Boolean
 isReceiveLinkEnabled : Boolean
 isBroadcastEnabled : Boolean
 isP2PEnabled : Boolean
operations
 getMessage(timeStep:Integer):Set(Message)
 startupSendLink()
 startupReceiveLink()

 31

 shutdownSendLink()
 shutdownReceiveLink()
 enableBroadcast()
 enableP2P()
 disableBroadcast()
 disableP2P()
 isSendLinkEnabled():Boolean
 isReceiveLinkEnabled():Boolean
 isBroadcastEnabled():Boolean
 isP2PEnabled():Boolean
 isSendBroadcastEnabled():Boolean
 isReceiveBroadcastEnabled():Boolean
 isSendP2PEnabled():Boolean
 isReceiveP2PEnabled():Boolean
 getRobotParameter():RobotParameter
 getDelay(name:String):Integer
 getRange():Integer
 getDeliveryProb(name:String):Integer
 addMsgToQueue(msg:Message):Boolean
 setCommType(commType:Integer)
end

3.1.3 RobotParameter class
This class is used to keep the parameter for each pair of robot such as delay time, delivery
probability.

class RobotParameter
attributes
 receiverName : String
 delayTime : Integer
 deliverProb : Integer
operations
 getReceiveName():String
 getDelay():Integer
 getDeliveryProb():Integer
 setReceiveName(name:String)
 setDelay(delay:Integer)
 setDeliveryProb(prob:Integer)
end

3.1.4 PriorityQueue class
This class is used to keep outgoing messages for each robot.

class PriorityQueue
attributes
operations
 add(msg:Message):Boolean
 get(index:Integer):Message
 remove(index:Integer):Message
 isEmpty():Boolean
end

 32

3.1.5 Message class
This class is the format of the message that will be used to communicate with other
robots. The attributes are sender, receiver, receivedTime, sentTime and content. The
receivedTime is the time, which the message will be sent out of the system. It is also the
time in which the receiver will get this message. The sentTime is the time, which the
sender sent the message. It is also the time that the communication system gets this
message.

class Message
attributes
 sender : String
 receiver : String
 content : MessageContent
 receivedTime : Integer
 sentTime : Integer
operations
 setSender(name:String)
 setReceiver(name:String)
 setContent(content:MessageContent)
 setReceivedTime(time:Integer)
 setSentTime(time:Integer)
 getSender():String
 getReceiver():String
 getContent():MessageContent
 getReceivedTime():Integer
 getSentTime():Integer
 isBroadcastMessage():Boolean
 isP2PMessage():Boolean
end

3.2 Associations

association robot between
 CommunicationsSystem[1] role belongTo
 RobotCommRecord[*] role robots
end

association parameter between
 RobotCommRecord[1] role parameterOwner
 RobotParameter[*] role hasParameters
end

association queue between
 RobotCommRecord[1] role queueOwner
 PriorityQueue[1] role hasQueue
end

association message between
 PriorityQueue[*] role inQueue
 Message[*] role hasMessages ordered
end

 33

3.3 Invariants

3.3.1 Robot has unique name.

context RobotCommRecord
 inv UniqueName:
 RobotCommRecord.allInstances->forAll(p1,p2| p1 <> p2
 implies p1.name <> p2.name)

3.3.2 Only robot with broadcast ability can send and receive broadcast message.

context RobotCommRecord
 inv BroadcastAbility1:
 RobotCommRecord.allInstances.hasQueue.hasMessages
 ->select(receiver='broadcast' and sender=self.name)->notEmpty
 implies self.isBroadcastEnabled = true

context r:RobotCommRecord
 inv BroadcastAbility2:
 r.hasQueue.hasMessages
 ->select(receiver='broadcast')->notEmpty
 implies r.isBroadcastEnabled = true

3.3.3 Only robot with point-to-point ability can send and receive point-to-point
message.

context RobotCommRecord
 inv P2PAbility1:
 RobotCommRecord.allInstances.hasQueue.hasMessages
 ->select(receiver <> 'broadcast' and sender=self.name)
 ->notEmpty implies self.isP2PEnabled = true

context r:RobotCommRecord
 inv P2PAbility2:
 r.hasQueue.hasMessages
 ->select(receiver <> 'broadcast')->notEmpty
 implies r.isP2PEnabled = true

3.3.4 Only robot with active send link can send message.

context RobotCommRecord
 inv sendAbility:
 RobotCommRecord.allInstances.hasQueue.hasMessages
 ->select(sender=self.name)->notEmpty
 implies self.isSendLinkEnabled = true

3.3.5 Only robot with active receive link can receive message.

context r:RobotCommRecord
 inv receiveAbility:
 r.hasQueue.hasMessages->notEmpty implies
 r.isReceiveLinkEnabled = true

 34

3.3.6 Messages are kept into the right queue.

context RobotCommRecord
 inv rightQueue:
 hasQueue.hasMessages->forAll((receiver=self.name) or
(receiver='broadcast'))

3.3.7 Messages are kept in priority queue ordered by received time.

context p:PriorityQueue
 inv priorityQueue:
 Sequence{1..(p.hasMessages->size-1)}
 ->forAll(i | p.hasMessages->at(i).receivedTime
 <= p.hasMessages->at(i+1).receivedTime)

3.3.8 If message’s received time is defined, then received time is equal or greater

than sent time.

context m:Message
 inv rightTime:
 m.receivedTime.isDefined implies m.receivedTime >= m.sentTime

3.3.9 If all links are shutdown, robot cannot send or receive message.

context c:CommunicationsSystem
 inv allLinkShutdown:
 RobotCommRecord.allInstances.hasQueue.hasMessages->notEmpty
 implies c.isLinkEnabled = true

3.3.10 Robots cannot receive their own sending message.

context r:RobotCommRecord
 inv sendToYourself:
 r.hasQueue.hasMessages->forAll(sender <> r.name)

 35

3.4 Operations

3.4.1 Register Robot

context CommunicationsSystem::registerRobot(n:String,c:Integer)
 pre precond_1: n.isDefined
 pre precond_2: c.isDefined
 pre precond_3: (c=1 or c=2 or c=3)
 pre precond_4: robots->select(name=n)->isEmpty
 post postcond_1: robots->exists(r | r.oclIsNew and r.name = n)
 post postcond_2: robots=robots@pre->union(robots->select(name=n))
 post postcond_3: robots->select(name=n)->size = 1
 post postcond_4: (c=1)implies
 robots->select(name=n and
 isBroadcastEnabled=true and
 isP2PEnabled=false)->notEmpty
 post postcond_5: (c=2) implies
 robots->select(name=n and
 isP2PEnabled=true and
 isBroadcastEnabled=false)->notEmpty
 post postcond_6: (c=3) implies
 robots->select(name=n and
 isBroadcastEnabled=true and
 isP2PEnabled=true)->notEmpty

This part of specification defines pre and post condition of register robot operation. It
takes two arguments, n – robot name and c – communication type. The precond_1 states
that robot name is defined. The precond_2 states that communication type is defined.
The precond_3 states that communication type can be 1, 2 or 3 only. The last pre
condition is there is no RobotCommRecord named n in the system before registering this
robot. There are six post conditions. The first post condition is RobotCommRecord is
new created and named “n”. The second post condition says that the new set of
RobotCommRecord is the previous set plus the new RobotCommRecord, which is just
created and named “n”. The third post condition states that there is only one
RobotCommRecord named “n”. The last three post conditions depend on type of
communication. If communication type is 1 then RobotCommRecord, which is named
“n”, has isBroadcastEnabled attribute sets to true while isP2PEnabled attribute sets to
false. If communication type is 2 then RobotCommRecord, which is named “n”, has
isBroadcastEnabled attribute sets to false while isP2PEnabled attribute sets to true.
Finally, setting robot to have both broadcast and point-to-point capability, which is if
communication type is 3 then RobotCommRecord, which is named “n”, has both
isBroadcastEnabled attribute and isP2PEnabled attribute set to true

3.4.2 Send Message operation

context CommunicationsSystem::sendMessage(msg:Message,timeStep:Integer)
 pre precond_1: timeStep > 0 and timeStep.isDefined
 pre precond_2: msg.isDefined
 pre precond_3: msg.sender.isDefined
 pre precond_4: msg.receiver.isDefined
 pre precond_5: isLinkEnabled = true

 36

 pre precond_6: robots->select(name=msg.sender)
 ->forAll(isSendLinkEnabled = true)

 pre precond_7: msg.receiver = 'broadcast'
 implies robots->select(name=msg.sender)
 ->forAll(isBroadcastEnabled = true)

 pre precond_8: msg.receiver <> 'broadcast'
 implies robots->select(name=msg.sender)->
 forAll(isP2PEnabled = true)

 post postcond_1: msg.sentTime = timeStep

 post postcond 2: msg.receiver <> 'broadcast' implies
 robots->select(name=msg.sender)->
 forAll(hasParameters->
 forAll(receiverName=msg.receiver implies
 msg.receivedTime = parameterOwner.belongTo.delay
 + timeStep + delayTime))

 post postcond 3: msg.receiver = 'broadcast' implies
 robots->select(name=msg.sender)->
 forAll(hasParameters->
 forAll(msg.receivedTime =
 parameterOwner.belongTo.delay
 + timeStep + delayTime))

 post postcond_4: msg.receiver = 'broadcast' implies
 robots->select(name <> msg.sender
 and isReceiveLinkEnabled = true
 and isBroadcastEnabled = true)
 ->forAll(r| r.hasQueue.hasMessages->asSet
 = r.hasQueue.hasMessages@pre
 ->including(msg)->asSet)

 post postcond_5: msg.receiver <> 'broadcast' implies
 robots->select(name = msg.receiver
 and isReceiveLinkEnabled = true
 and isP2PEnabled = true)
 ->forAll(r| r.hasQueue.hasMessages->asSet
 = r.hasQueue.hasMessages@pre
 ->including(msg)->asSet)

This part of specification defines pre and post condition for sendMessage operation. The
pre conditions are time step is greater than 0, time step is defined, message is defined, the
system link is active, sender’s send link is active. Furthermore, if the message is
broadcast then sender must have broadcast capability; otherwise sender must have point-
to-point capability. The post conditions are message’s sentTime and receivedTime are
set; the message will be included in the receiver’s priority queue if the receiver is
qualified. The process of qualifying receiver is check if receiver’s receive link is active
and if the message is broadcast then the receiver must have broadcast capability;
otherwise the receiver must have point-to-point capability

 37

3.4.3 Get Message operation

context CommmunicationsSystem::getMessage(n:String,timeStep:Integer)
:Set(Message)

 pre precond_1: n.isDefined
 pre precond_2: robots.exists(r| r.name=n)
 pre precond_3: timeStep.isDefined
 pre precond_4: timeStep > 0
 post postcond_1: robots->select(name = n)
 ->forAll(r | r.hasQueue.hasMessages->asSet
 = r.hasQueue.hasMessages@pre->asSet
 - r.hasQueue.hasMessages@pre
 ->select(receivedTime = timeStep)->asSet)

 post postcond_2: robots->select(name=n)
 ->forAll(r| result = r.hasQueue.hasMessages@pre
 ->select(receivedTime = timeStep)->asSet)

This part is the specification for getMessage operation. The post conditions are n (robor
name) is defined, there exists robot named n, time step is defined and greater than 0. The
post conditions are priority queue of robot n excludes messages which receivedTime is
equal to time step and the operation will return the result which is a set of messages
which receivedTime is equal to time step.

 38

CHAPTER 7

TEST PLAN

1. Test plan identifier
TestPlan-CommRobot-001

2. Introduction
This test plan is used to address the required test of “Communication Model for
Cooperative Robotics Simulators”. The software test items and features will include the
feature as described in Software Requirement Specification Version 1.1

3. Test Items
• CommunicationsSystem class
• RobotCommRecord class
• RobotParameters class
• PriorityQueue class
• Message class

4. Features to be tested
The following list described the features that will be tested based on the Software
Requirement Specification.

Feature identifier Description Requirement number
T-001 Register robot. 3.2.1,3.2.2
T-002 Sending broadcast message 3.2.3,3.2.5,3.2.6
T-003 Sending point-to-point message 3.2.9,3.2.11,3.2.13
T-004 Receiving broadcast message 3.2.4,3.2.5,3.2.7
T-005 Receiving point-to-point

message
3.2.10,3.2.11,3.2.12,3.2.14

T-006 Start up all links 3.2.17
T-007 Shutdown all links 3.2.17
T-008 Set system range 3.2.19
T-009 Set system delay 3.2.18
T-010 Set system delivery probability 3.2.20
T-011 Start up robot’s send link 3.2.17
T-012 Shutdown robot’s send link 3.2.17
T-013 Start up robot’s receive link 3.2.17
T-014 Shutdown robot’s receive link 3.2.17
T-015 Enable broadcast capability 3.2.2
T-016 Disable broadcast capability 3.2.2

 39

T-017 Enable point-to-point capability 3.2.2
T-018 Disable point-to-point capability 3.2.2
T-019 Set robot range 3.2.19,3.2.16
T-020 Set robot delay 3.2.18,3.2.15,3.2.8
T-021 Set robot deliver probability 3.2.20

Table 1. Features to be tested

5. Approach
Unit testing
All executable java files, which are identified in section 3, will be tested. The JUnit, a
testing framework for java unit testing, will be used to generate automated testing. One
or more drivers and stubs will be developed to conduct unit testing. All executable files
would be passed before starting integration testing.
Integration testing
The integration testing will include the combined function of several classes to perform
the main software feature. Bottom-up integration will be used to conduct integration
testing.
System testing
After integration testing, the system testing will be performed with other modules in the
system to ensure all requirements are satisfied.

6. Environmental Needs.

6.1 Hardware
 The testing will be done on Sun Sparc and Intel-based machine.
6.2 Software
 J2sdk version 1.4 is used to compile and execute program.
6.3 Operating systems.
 Windows XP Professional
 Unix Solaris

7. Test Cases
7.1 Unit testing

7.1.1 Register robot
Test item: CommunicationsSystem class
Input: robot name, communication type (broadcast, point-to-point, or both)
Pass criteria:

• New RobotCommRecord class is created.
• The RobotCommRecord has a name as the input robot name.
• Unique RobotCommRecord.
• Broadcast, point-to-point, or both capabilities are enabled for this robot depending

on the communication type.

 40

Fail criteria
• New RobotCommRecord is not created.
• The RobotCommRecord has a name different from the input robot name.
• There is a duplication of RobotCommRecord (has the same name)..

7.1.2 Sending broadcast message.
Test item: CommunicationsSystem class
Input: Message object, time step
Pass criteria:

• All receivers get the message and save it to their priority queue.
Fail criteria:

• One or more receiver does not get the message or not save it to their priority
queue.

7.1.3 Sending point-to-point message.
Test item: CommunicationsSystem class
Input: Message object, time step
Pass criteria:

• The specified receiver gets the message and save it to their priority queue.
• The received message is the same as the sending message.

Fail criteria:
• The specified does not get the message or not save it to its priority queue.
• The other receives get the message or save it to their priority queue.
• The received message is not the same as the sending message.

7.1.4 Receiving broadcast message.
Test item: CommunicationsSystem class
Input: robot name, current time step
Output: a set of Message object.
Pass criteria:

• Only Message objects, which has time step equal to current time step, are
returned.

• The returned Message objects are removed from robot’s priority queue.
Fail criteria:

• One or more returned Message objects, which has time step not equal to current
time step, are returned.

• The returned Message objects are not removed from robot’s priority queue.

7.1.5 Receiving point-to-point message.
Test item: CommunicationsSystem class
Input: robot name, time step
Output: a set of Message object.
Pass criteria:

• Only Message objects, which have time step equal to current time step, are
returned.

 41

• The returned Message objects are removed from robot’s priority queue.
• Only Message objects, which have receiver name equal to robot name, are

returned.
Fail criteria:

• One or more returned Message objects, which has time step not equal to current
time step, are returned.

• The returned Message objects are not removed from robot’s priority queue.
• One or more Message objects, which have receiver name equal to robot name, are

returned.

7.1.6 Start up all links
Test item: CommunicationsSystem class
Pass criteria:

• IsLinkEnabled attribute is set to true.
Fail criteria:

• IsLinkEnabled attribute is set to something else.

7.1.7 Shutdown all links
Test item: CommunicationsSystem class
Pass criteria:

• IsLinkEnabled attribute is set to false.
Fail criteria:

• IsLinkEnabled attribute is set to something else.

7.1.8 Set system Range
Test item: CommunicationsSystem class
Input: System range
Pass criteria:

• Range attribute is set to system range.
Fail criteria:

• Range attribute is not set or set to something else.

7.1.9 Set system delay
Test item: CommunicationsSystem class
Input: System delay
Pass criteria:

• Delay attribute is set to system delay.
Fail criteria:

• Delay attribute is not set or set to something else.

7.1.10 Set system delivery probability
Test item: CommunicationsSystem class
Input: System delivery probability
Pass criteria:

• DeliveryProb attribute is set to system delivery probability.

 42

Fail criteria:
• DeliveryProb attribute is not set or set to something else.

7.1.11 Start up robot’s send link
Test item: RobotCommRecord class
Pass criteria:

• isSendLinkEnabled attribute is set to true.
Fail criteria:

• isSendLinkEnabled attribute is set to something else.

7.1.12 Shutdown robot’s send link
Test item: RobotCommRecord class
Pass criteria:

• isSendLinkEnabled attribute is set to false.
Fail criteria:

• isSendLinkEnabled attribute is set to something else.

7.1.13 Start up robot’s receive link
Test item: RobotCommRecord class
Pass criteria:

• isReceiveLinkEnabled attribute is set to true.
Fail criteria:

• isSendLinkEnabled attribute is set to something else.

7.1.14 Shutdown robot’s receive link
Test item: RobotCommRecord class
Pass criteria:

• isReceiveLinkEnabled attribute is set to false.
Fail criteria:

• isReceiveLinkEnabled attribute is set to something else.

7.1.15 Set robot range
Test item: RobotCommRecord class
Input: robot range
Pass criteria:

• Range attribute is set to robot range.
Fail criteria:

• Range attribute is not set or set to something else.

7.1.16 Set robot delay
Test item: RobotCommRecord class
Input: robot1 name, robot2 name, robot delay
Pass criteria:

• Robot1 has a RobotParameter record that has robot2 as receiver name and robot
delay as delay time.

 43

• Robot2 has a RobotParameter record that has robot1 as receiver name and robot
delay as delay time.

Fail criteria:
• There is no record of robot1’s robotparameter that has robot2 as receiver name

and robot delay as delay time.
• There is no record of robot2’s robotparameter that has robot1 as receiver name

and robot delay as delay time.

7.1.17 Set robot delivery probability
Test item: RobotCommRecord class
Input: robot1 name, robot2 name, robot delivery probability
Pass criteria:

• Robot1 has a RobotParameter record that has robot2 as receiver name and robot
delivery probability as deliveryProb.

• Robot2 has a RobotParameter record that has robot1 as receiver name and robot
delivery probability as deliveryProb.

Fail criteria:
• There is no record of robot1’s robotparameter that has robot2 as receiver name

and robot delivery probability as deliveryProb.
• There is no record of robot2’s robotparameter that has robot1 as receiver name

and robot delivery probability as deliveryProb.

7.1.18 Enable broadcast capability
Test item: RobotCommRecord class
Input: robot name
Pass criteria:

• The RobotCommRecord with this robot name has isBroadcastEnabled attribute
set to true.

Fail criteria:
• The RobotCommRecord with this robot name has isBroadcastEnabled attribute

set to something else.

7.1.19 Enable point-to-point capability
Test item: RobotCommRecord class
Input: robot name
Pass criteria:

• The RobotCommRecord with this robot name has isP2PEnabled attribute set to
true.

Fail criteria:
• The RobotCommRecord with this robot name has isP2PEnabled attribute set to

something else.

7.1.20 Disable broadcast capability
Test item: RobotCommRecord class
Input: robot name

 44

Pass criteria:
• The RobotCommRecord with this robot name has isBroadcastEnabled attribute

set to false.
Fail criteria:

• The RobotCommRecord with this robot name has isBroadcastEnabled attribute
set to something else.

7.1.21 Disable point-to-point capability
Test item: RobotCommRecord class
Input: robot name
Pass criteria:

• The RobotCommRecord with this robot name has isP2PEnabled attribute set to
false.

Fail criteria:
• The RobotCommRecord with this robot name has isP2PEnabled attribute set to

something else.
7.1.22 Start up send link
Test item: RobotCommRecord class
Input: robot name
Pass criteria:

• The RobotCommRecord with this robot name has isSendLinkEnabled attribute set
to true.

Fail criteria:
• The RobotCommRecord with this robot name has isSendLinkEnabled attribute set

to something else.

7.2 Integration testing

7.2.1 Sending and receiving broadcast message
All robot records tested in these scenarios have broadcast capability and set parameters to
default unless they are set by the scenario. The default parameters are incoming link and
outgoing link enables, system link enables, delay time is zero, delivery probability is
100% and no maximum range is set for the entire system and for each robot.

7.2.1.1 Scenario 1 -- Default scenario
Pass criteria:

• All robots get the broadcast messages.
Fail criteria:

• One or more robots do not get the broadcast messages.

7.2.1.2 Scenario 2 -- Disable broadcast capability.
Pass criteria:

• A robot without broadcast capability does not get any broadcast messages from
other robots

 45

• Other robots do not get any broadcast messages from a robot without broadcast
capability.

Fail criteria:
• A robot without broadcast capability gets broadcast messages from other robots
• One or more robot gets broadcast messages from a robot without broadcast

capability.

7.2.2 Sending and receiving point-to-point message

All robots tested in these scenarios have point-to-point capability and set parameters to
default unless they are set by the scenario. The default parameters are incoming link and
outgoing link enables, system link enables, delay time is zero, delivery probability is
100% and no maximum range is set for both system and for each robot.

7.2.2.1 Scenario 3 -- Default scenario
Pass criteria:

• A robot with specified address gets a point-to-point message.
Fail criteria:

• Other robots that are not the specified address get a point-to-point message.

7.2.2.2 Scenario 4 -- Disable point-to-point capability.
Pass criteria:

• A robot without point-to-point capability does not get any point-to-point messages
from other robots

• Other robots do not get point-to-point messages from a robot without point-to-
point capability.

Fail criteria:
• A robot without point-to-point capability gets point-to-point messages from other

robots
• One or more robot gets point-to-point messages from a robot without point-to-

point capability.

7.2.3 Both broadcast and point-to-point message

The following scenarios apply for sending both broadcast and point-to-point messages.
All robot records tested in these scenarios have broadcast capability, point-to-point
capability and set parameters to default unless they are set by the scenario. The default
parameters are incoming link and outgoing link enables, system link enables, delay time
is zero, delivery probability is 100% and no maximum range is set for both system and
for each robot.

7.2.3.1 Scenario 5 -- Disable system link
Pass criteria:

• All robots do not get any messages from other robots.

 46

Fail criteria:
• One or more robots get messages from other robots.

7.2.3.2 Scenario 6 -- Disable outgoing link of a robot.
Pass criteria:

• No robots get the message sending from a robot with disabled outgoing link.
Fail criteria:

• One or more robots get the message sending from a robot with disabled outgoing
link.

7.2.3.3 Scenario 7 -- Disable incoming link of a robot.
Pass criteria:

• A robot with disabled incoming link does not get any messages from other robots.
Fail criteria:

• A robot with disabled incoming link gets messages from other robots.

7.2.3.4 Scenario 8 – Set system delay
Pass criteria:

• Receiver gets message from sender after the time of sender sent message plus
system delay. (Received time = sent time + system delay)

Fail criteria:
• Receiver gets message from sender in different time other than sent time plus

system delay. (Received time <> sent time + system delay)

7.2.3.5 Scenario 9 – Set robot delay
Pass criteria:

• Receiver gets message from sender after sender sent message plus robot delay
time. (Received time = sent time + robot delay)

Fail criteria:
• Receiver gets message from sender in time other than sent time plus robot delay.

(Received time <> sent time + robot delay)

7.2.3.6 Scenario 10 – Set system delay and robot delay
Pass criteria:

• Receiver gets message from sender after sender sent message plus system delay
plus robot delay time. (Received time = sent time + system delay + robot delay)

Fail criteria:
• Receiver gets message from sender in time other than sent time plus system delay

plus robot delay. (Received time <> sent time + system delay + robot delay)

7.2.3.7 Scenario 11 – Set system range
Pass criteria:

• Only robots within this range of sender get the message.
Fail criteria:

• One or more robots outside this range of sender get message.

 47

* this range refers to system range.

7.2.3.8 Scenario 12 – Set robot range
Pass criteria:

• Only robots within this range of sender get the message.
Fail criteria:

• One or more robots beyond this range of sender get message.
* this range refers to robot range.

7.2.3.9 Scenario 13 – Set system range and robot range
Pass criteria:

• Only robots within this range of sender get the message.
Fail criteria:

• One or more robots outside this range of sender get message.
* this range refers to system range + robot range.

7.2.3.10 Scenario 14 – Set system delivery probability
Pass criteria:

• Only randomly selected message within the probability range will delivery to the
receivers.

• Randomly selected message beyond the probability range will not delivery to the
receivers.

Fail criteria:
• Randomly selected message within the probability does not delivery to the

receivers.
• Randomly selected message beyond the probability range delivery to the

receivers.

7.2.3.11 Scenario 15 – Set robot delivery probability
Pass criteria:

• Only randomly selected message within the probability range will delivery to the
receivers.

• Randomly selected message beyond the probability range will not delivery to the
receivers.

Fail criteria:
• Randomly selected message within the probability does not delivery to the

receivers.
• Randomly selected message beyond the probability range delivery to the

receivers.

7.2.3.12 Scenario 16 – Set system delivery probability and robot delivery probability
*The probability range will be the average of system and robot delivery probability.
Pass criteria:

• Only randomly selected message within the probability range will delivery to the
receivers.

 48

• Randomly selected message beyond the probability range will not delivery to the
receivers.

Fail criteria:
• Randomly selected message within the probability does not delivery to the

receivers.
• Randomly selected message beyond the probability range delivery to the

receivers.

7.3 System testing

The System testing will be done by having Environment use the communications
interface to send and receive message. Robots create their own messages and send or
receive message through the communication model via the environment. The
environment control panel can also set the parameters via the environment. The test will
be conducted using the same test cases as integration testing. The system testing will
ensure the compatibility with other modules in the system.

8. Schedule
All testing will be performed during July14 – July 28, 2004. Unit testing will be
performed after finish coding each module. Integration testing will begin after all units
testing are done.

 49

CHAPTER 8

FORMAL TECHNICAL INSPECTION

1. Introduction
The purpose of this document is to provide formal technical inspection checklist of the
design architecture for “Communication Model for Cooperative Robotic Simulator”.
Two independent MSE students will inspect the design architecture and provide a report
on the result of their inspection. The formal inspection is the review process to ensure
the quality of the software design, which will be useful toward the development process.

2. Items to be inspected
The architecture design of “Communication Model for Cooperative Robotic Simulator”
will be inspected including use-case diagram, class diagram and sequence diagram.
Some reference documents will be provided to give some background of the system.
The reference documents are Software Requirement Specification version 1.0 and Project
Overview version 1.0.

The following are the architecture design will be inspected.

• Use case diagram
• Class diagram
• Sequence diagram

3. Formal technical inspector
• Kevin Sung
• Estaban Guillen

4. Formal technical inspection checklist

Inspection list Pass/Fail/Partial Comment
1. The symbols using in use case diagram
conform to UML diagram.

2. The symbols using in class case diagram
conform to UML diagram.

3. The symbols using in sequence diagram
conform to UML diagram.

4. Use case diagram and descriptions are clear
and well organized.

5. Class diagram and descriptions are clear and
well organized.

6. Each message passing in sequence diagram is
the method in class diagram.

 50

7. Each message passing in sequence diagram
must be defined as public method.

8. Class names are well defined and indicate
their meaning

9. The architecture design covers the entire
requirement defined in Software Requirement
Specification.

Table 2. Formal Technical Inspection Checklist

 51

CHAPTER 9

COMPONENT DESIGN

1. Introduction
This section will provide description of class diagram for the Communication Model for
Cooperative Robotics Simulator.

2. Class Diagram
The communication Model contains five classes, CommunicationsSystem,
RobotCommRecord, PriorityQueue, RobotParameters and Message. More details will be
described in the next section.

Figure 17. Communication Model Class Diagram

3. Class Descriptions
The following section will provide class diagram member in detail. It will provide only
public attributes and functions. A detail description of private attributes and functions is
provided in JavaDoc documentation.

 52

3.1 CommunicationsSystem Class

Figure 18. CommunicationsSystem Class

3.1.1 Detailed Description
The CommunicationsSystem class is served as a main interface, which interact with the
environment. It provides function for robot and environment control panel. It is also
responsible for sending message, delivering message to the right robot including the
process of verifying participants.

 53

3.1.2 Constructor

• CommunicationsSystem(Environment env)
This is default CommunicationsSystem constructor with Environment as
argument. This Environment is used for retrieving distance between two robots.

3.1.3 Public Member Attributes
The following attributes are constant value using in the communication system

• static final int BROADCAST
The constant value indicates broadcast ability. It is used to define that a robot has
broadcast ability. It is one of communication types that uses in the registerRobot
method. For instances,
registerRobot(“robotA”,CommunicationsSystem.BROADCAST)

• static final int BROADCASTANDP2P

The constant value indicates broadcast and point-to-point ability. It is used to
define that a robot has both broadcast and point-to-point ability. It is one of
communication types that uses in the registerRobot method. For instances,
registerRobot(“robotA”,CommunicationsSystem.BROADCASTANDP2P)

• static final int INFINITE
The constant value indicates infinite range limit. It is used to define that there is
no range limit for a robot.

• static final int POINT2POINT

The constant value indicates point-to-point ability. It is used to define that a robot
has point-to-point ability. It is one of communication types that uses in the
registerRobot method. For instances,
registerRobot(“robotA”,CommunicationsSystem.POINT2POINT)

3.1.4 Public Member Functions

• Vector getMessage(String name,long timeStep)

Retrieve message from the communication system. The parameters are robot
name and time step. The robot name is the name of the owner, who would like to
retrieve messages at the defined time step.
Parameters:

name - - the owner of the message
timeStep - - the time step of messages which robot want to get messages.

Returns:
A vector of messages.

 54

• RobotCommRecord getRobotCommRecord(String name)
Get RobotCommRecord with identified name
Parameters:

name - - robot name
Returns:

Identified RobotCommRecord

• int getRobotDelay(String robot1,String robot2)

Get delay time between a pair of robot.
 Parameters:

robot1 - - first robot name
robot2 - - second robot name

 Returns:
Delay time between robot1 and robot2. The unit of delay time is in time
step, which is about 500 milliseconds per time step

• int getRobotDeliveryProb(String robot1,String robot2)

Get delivery probability of a pair of robot
Parameters:

robot1 - - first robot name
robot2 - - second robot name

 Returns:
Delivery probability between robot1 and robot2. (Delivery probability has
value between 0-100)

• int getRobotRange(String name)

Get maximum range limit of a robot.
Parameters:

name - - robot name
 Returns:

maximum range limit (unit is meter)

• boolean isMsgLost(int random, int prob)

Determine if message is lost or not by comparing random value of a message with
total delivery probability.
Parameters:

random - - message random value
prob - - total delivery probability (value between 0-100)

Returns:
true if random > prob , a message will be lost if random value is beyond
the probability.

• boolean isRobotBroadcastEnabled(String name)

Check if broadcast abililty is set to true
Parameters:

name - - robot name

 55

 Returns:
true - if broadcast is enabled, false otherwise

• boolean isRobotExist(String name)

Check if this robot exists in the system.
Parameters:

name - - name of a robot
Returns:

true if this robot exists, false otherwise

• boolean isRobotP2PEnabled(String name)

Check if point to point ability is set to true
Parameters:

name - - robot name
 Returns:

true - if point to point is enabled, false otherwise

• boolean isRobotReceiveEnabled(String name)

Check if robot's incoming link is set to true
Parameters:

name - - robot name
 Returns:

true - if incoming link is enabled, false otherwise

• boolean isRobotSendEnabled(String name)

Check if robot's outgoing link is set to true
Parameters:

name - - robot name
 Returns:

true - if outgoing link is enabled, false otherwise

• boolean isLinkEnabled()
Checking if system link is enabled or not
Returns:

Status of system link

• boolean registerRobot(String name, int commType)

Register robot into the system before starting communication session.
Parameters:

name - - robot name
commType - - communication types which registered robot can use to
communicate. The possible values are BROADCAST, POINT2POINT
and BROADCASTANDP2P.

Returns:
true if successfully registered, false otherwise

 56

• void sendMessage(Message msg, long timeStep)
Send message to other robots. There are two parameters, which are sending
message and the current time step. Every message has sent time and received
time. Sent time is the time step, which this message is sending out. Received
time is the time step which receiver should get this message. Received time is
defined based on system delay and robot delay.
Parameters:

msg - - message to others robot.
timeStep - - current time step.

• void setRobotDelay(String robot1, String robot2,int delay)

Set delay between a pair of robots.
Parameters:

robot1 - - the first robot's name.
robot2 - - the second robot’s name.
delay - - delay time between these two robots. The unit of delay time is in
time step, which is about 500 milliseconds per time step.

• void setRobotDeliveryProb(String robot1, String robot2, int prob)
Set delivery probability between a pair of robot.
Parameters:

robot1 - - first robot's name
robot2 - - second robot's name
prob - - delivery probability (value between 0-100)

• void setRobotRange(String name,int range)

Set maximum range limit, which is the maximum distance of receiver from which
this robot receive message.
Parameters:

name - - robot name
range - - maximum range limit (unit is meter)

• void shutdownAllLink()

To shutdown system link

• void shutdownReceiveLink(String name)

Shutdown robot's incoming link
Parameters:

name - - robot name

• void shutdownSendLink(String name)

Shutdown robot's outgoing link
Parameters:

name - - robot name

 57

• void startupAllLink()
To start up system link

• void startupReceiveLink(String name)

Startup robot's imcoming link
Parameters:

name - - robot name

• void startupSendLink(String name)
Start up robot's outgoing link
Parameters:

name - - robot name

3.2 RobotCommRecord Class

Figure 19. RobotCommRecord Class

 58

3.2.1 Detailed Description
RobotCommRecord class keeps communication parameters of each robot.
Communication parameters include range, delay, link and delivery probability between
each robot.
• Range is the maximum distance, which a robot can send messages to other robots.
• Delay is the delay time between each pair of robot to simulate traffic in the system.
• Link includes send link and receive link which both can be start up or shutdown.
• Delivery Probability is the probability of message that will be delivered to the

destination. It will help generating message lost in the system.

This class manipulates the parameters and also determines if sender and receiver robot
are qualified to pass and get of both point-to-point and broadcast message.

3.2.2 Constructor
• RobotCommRecord(String name, int commType)

Default constructor of RobotCommRecord takes two parameters, robot name and
communication type.
Parameters:

name - - Robot name
commType - - Communication type (BROADCAST,POINT2POINT or
BROADCASTANDP2P)

3.2.3 Public Member Attributes
There is no public member attribute in RobotCommRecord class

3.2.4 Public Member Functions

• void addMsgToQueue(Message msg)
Method to add a message to a priority queue
Parameters:

msg - - message adding to a queue

• boolean addRobotParameters(RobotParameters robot)
Adding robot parameter, which related to this robotCommRecord. It will check if
there exists. If not, the record will be added into the vector.
Parameters:

robot - - robot parameter adding to the vector
Returns:

true if sucessfully added, false otherwise

• void disableBroadcast()
Disable Broadcast capability

 59

• void disableP2P()
 Disable Point-to-point capability

• void enableBroadcast()

Enable Broadcast capability

• void enableP2P()
 Enable Point-to-point capability

• int getDelay(String name)
 Get delay time

 Parameters:
 name – robot name
 Returns:

Delay time. The unit of delay time is in time step, which is about 500
milliseconds per time step

• int getDeliveryProb(String name)
 Get delivery probability
 Parameters:
 name – robot name
 Returns:

Delivery probability value (between 0-100)

• Vector getMessage(long time)
 Get a Vector of message
 Parameters:

time - - received time of messages which will be taking out from the
queue.

 Returns:
 a vector of message

• boolean isReceiveBroadcastEnabled()
 Check if robot can get broadcast message

Returns:
 true if robot can get broadcast message, false otherwise

• boolean isReceiveP2PEnabled()
 Check if robot can get point-to-point message

Returns:
 true if robot can get point-to-point message, false otherwise

• boolean isSendBroadcastEnabled()
 Check if robot can send broadcast message

Returns:
 true if robot can send broadcast message, false otherwise

 60

• boolean isSendP2PEnabled()
 Check if robot can send Point-2-point message

Returns:
 true if robot can send point-to-point message

• void setDelay(String name, int delay)
 Set delay time of a robot

 Parameters:
 name - - robot name

delay - - delay time. The unit of delay time is in time step, which is about
500 milliseconds per time step

• void setDeliveryProb(String name, int prob)

 Set delivery probability of a robot
 Parameters:

 name - - robot name
prob - - delivery probability (value between 0-100)

• void shutdownReceiveLink()
 Shutdown incoming link

• void shutdownSendLink()
 Shutdown outgoing link

• void startupReceiveLink()
 Start up incoming link

• void startupSendLink()
 Start up outgoing link

3.3 RobotParameters class

Figure 20. RobotParameters Class

3.3.1 Detailed Description
This RobotParameters class represents communication parameter. Each robot owns
multiple records of RobotParameters. Each record of RobotParameters contains

• Receiver Name - the communicating robot

 61

• Delay time - the communication delay time between the owner and this receiver.
• Delivery Probability - the probability which messages will be delivered to the

receiver

3.3.2 Constructor

• RobotParameters(String name)
 RobotParameters Constructor with the name of the receiver
 Parameters:

 name - - Receiver name

• RobotParameters(String name, int delay, int prob)
RobotParameters Constructor with the name of the receiver, delay time and
delivery probability corresponds to this receiver.

 Parameters:
 name - - Receiver name

delay - - Delay time. The unit of delay time is in time step, which is about
500 milliseconds per time step
prob - - Delivery Probability (value between 0-100)

3.3.3 Public Member Attributes
There is no public member attribute in this class.

3.3.4 Public Member Function
The public member functions in this class are only Get and Set method.

3.4 PriorityQueue Class

Figure 21. PriorityQueue Class

3.4.1 Detailed Description
This PriorityQueue class is used to keep Message in Queue in ascending order of
receivedTime. Robots have their own priority queue. It keeps incoming message and
wait for the owner call getMessage operation to retrieve message from the queue.

 62

3.4.2 Constructor
• PriorityQueue()
 PriorityQueue Constructor

3.4.3 Public Member Attributes
There is no public member attribute in this class.

3.4.4 Public Member Function

• void add(Message msg)
 Adding message to a queue in order of receivedTime
 Parameters:

 msg - - message adding to a queue

• Message get(int index)
 Get specific message from the queue without deleting
 Parameters:

 index - - the position of message
 Returns:

 a message

• int getInsertIndex(long time)
 Helper method to get the right adding position.
 Parameters:

 time - - receive time of new message adding to a queue

• boolean isEmpty()
 Check if queue is empty

 Returns:
 true if queue is empty, false otherwise

• Message remove(int index)
 Removing specific message from the queue
 Parameters:

 index - - the position of removing message
 Returns:

 a message

• int size()
 Get size of priority queue

 Returns:
 size of queue

 63

3.5 Message Class

Figure 22. Message Class

3.5.1 Detailed Description
This class represents format of message, which passes back and forth between robots in
the system. The content in a message is composed of

• Sender
• Receiver
• The time that message was sent.
• The expected time that message will be delivered to the receiver.
• The real content of a message

The sent time will be automatically filled in with the current time step. By the time
message is created the received time will be blank until the message is passed to the
process of sending message. The received time will be filled out based on system delay
and robot delay.

3.5.2 Constructor
• Message()

This is a constructor of Message class without argument.

• Message(String sender, String receiver, Object content)
This is a constructor of Message class.

 Parameters:
 sender - - message sender
 receiver - - message receiver
 content - - actual content of message

 64

3.5.3 Public Member Attributes
• static final Message NULL_MESSAGE

Null message is used to verify that this is the last message. It is used by
environment to check if it is the last message from and to a robot.

3.5.4 Public Member Function
• boolean isBroadcastMessage()

Check if this message is broadcast message.
 Returns:

 true if receiver is broadcast, false otherwise

• boolean isNullMessage()
Check is this message is null message.
Returns:
 true if it is NULL_MESSAGE, false otherwise

• boolean isP2PMessage()

Check if this message is point-to-point message.
 Returns:

 true if receiver is not broadcast, false otherwise

 65

CHAPTER 10

ASSESSMENT EVALUATION

1. Introduction
This document will provide the test result of the Communication Model for Cooperative
Robotics Simulator based on Test Plan 1.0

2. Testing Result Summary

Feature
Identifier

Test Case Result

T-001 Register robot. Passed
T-002 Sending broadcast message Passed
T-003 Sending point-to-point message Passed
T-004 Receiving broadcast message Passed
T-005 Receiving point-to-point message Passed
T-006 Start up all links Passed
T-007 Shutdown all links Passed
T-008 Set system range Passed
T-009 Set system delay Passed
T-010 Set system delivery probability Passed
T-011 Start up robot’s send link Passed
T-012 Shutdown robot’s send link Passed
T-013 Start up robot’s receive link Passed
T-014 Shutdown robot’s receive link Passed
T-015 Enable broadcast capability Passed
T-016 Disable broadcast capability Passed
T-017 Enable point-to-point capability Passed
T-018 Disable point-to-point capability Passed
T-019 Set robot range Passed
T-020 Set robot delay Passed
T-021 Set robot deliver probability Passed

Table 3. Testing Result Summary

3. Testing Result Details

3.1 T-001 Register robot
This test case was successfully passed. The new RobotCommRecord was created and
was assigned to have communication capability as stated in communication type.

 66

3.2 T-002 Sending broadcast message
This test case was successfully passed. Only the robots with broadcast capability can
send out messages.

3.3 T-003 Sending point-to-point message
This test case was passed. Only the robots with point-to-point capability can send point-
to-point message

3.4 T-004 Receiving broadcast message
This test was failed but finally passed. When sending broadcast message, a message
needs to be distributed to the other robots to save in their queue. Due to the distribution
process, received time attribute will be modified to be an actual received time. Each
robot’s received time will be varied. It depends on robot’s parameters, which are system
delay and robot delay. Since Message object implements serialization, if we put a
message in a robot’s queue without recreation, modifying an attribute will affect a
message, which is already inserted into a queue. As a result, the problem has been solved
by replicating the message before adding to a queue.

In addition, receivers get messages based on their parameters, which are delay, range and
delivery probability. The results of each scenario are as followed.

• System delay was set
Receivers got message from sender after the time of sender sent message plus
system delay. (Received time = sent time + system delay)

• Robot delay was set
Receivers got message from sender after sender sent message plus robot delay
time. (Received time = sent time + robot delay)

• System delay and Robot delay were set
Receivers got message from sender after sender sent message plus system delay
plus robot delay time. (Received time = sent time + system delay + robot delay)

• System range was set
Only robots within system range limit of sender got the message.

• Robot range was set
Only robots within robot range of sender got the message.

• System range and robot range were set
Only robots within this range of sender got the message. In this case, this range
is system range plus robot range.

 67

• System delivery Probability was set
Only randomly selected message within the system delivery probability range was
delivered to the receivers.

• Robot delivery Probability was set
Only randomly selected message within the robot delivery probability range was
delivered to the receivers.

• System delivery Probability and robot delivery probability were set
Only randomly selected message within the delivery probability range was delivered
to the receivers. In this case, the delivery probability is the average of system
delivery probability and robot delivery probability.

3.5 T-005 Receiving point-to-point message
This test was passed. The robot with point-to-point capability and enabled incoming link
received all point-to-point messages. Robots received messages correctly based on their
parameters, which are delay, range, delivery probability and link status. The results of
each scenario are as followed.

• System delay was set
Receivers got message from sender after the time of sender sent message plus
system delay. (Received time = sent time + system delay)

• Robot delay was set
Receivers got message from sender after sender sent message plus robot delay
time. (Received time = sent time + robot delay)

• System delay and Robot delay were set
Receivers got message from sender after sender sent message plus system delay
plus robot delay time. (Received time = sent time + system delay + robot delay)

• System range was set
Only robots within system range limit of sender got the message.

• Robot range was set
Only robots within robot range of sender got the message.

• System range and robot range were set
Only robots within this range of sender got the message. In this case, this range
is system range plus robot range.

• System delivery Probability was set
Only randomly selected message within the system delivery probability range was
delivered to the receivers.

 68

• Robot delivery Probability was set
Only randomly selected message within the robot delivery probability range was
delivered to the receivers.

• System delivery Probability and robot delivery probability were set
Only randomly selected message within the delivery probability range was delivered
to the receivers. In this case, the delivery probability is the average of system
delivery probability and robot delivery probability.

3.6 T-006 Start up all links
This test was passed. When StartupAllLink was called, the system link variable was set
to true.

3.7 T-007 Shutdown all links
This test was passed. When ShutdownAllLink was called the system link variable was
set to false.

3.8 T-008 Set system range
This test was passed. The system range variable was correctly set.

3.9 T-009 Set system delay
This test was passed. The system delay variable was correctly set.

3.11 T-010 Set system delivery probability
This test was passed. The system delivery probability variable was correctly set.

3.12 T-011 Start up robot’s send link
This test was passed. The outgoing link of a particular robot was set to true.

3.13 T-012 Shutdown robot’s send link
This test was passed. The outgoing link of a specified robot was set to false.

3.14 T-013 Start up robot’s receive link
This test was passed. The incoming link of a particular robot was set to true.

3.15 T-014 Shutdown robot’s receive link
This test was passed. The incoming link of a particular robot was set to false;

3.16 T-015 Enable broadcast capability
This test was passed. The variable for broadcast status was set to true.

3.17 T-016 Disable broadcast capability
This test was passed. The variable for broadcast status was set to false.

 69

3.18 T-017 Enable point-to-point capability
This test was passed. The variable for point-to-point status was set to true.

3.19 T-018 Disable point-to-point capability
This test was passed. The variable for point-to-point status was set to false.

3.20 T-019 Set robot range
This test was passed. The range of a particular robot was correctly set.

3.21 T-020 Set robot delay
This test was passed. The delay of a particular robot was correctly set.

3.21 T-021 Set robot deliver probability
This test was passed. The delivery probability of a particular robot was correctly set.

3.22 Integration Testing

The integration testing was passed. I have done this successful testing by integrating it
with the Environment. This test was done by testing in two main functions: robot
functions and control panel functions. The robot functions include message passing
between the robots and the communication model. The control panel functions consist of
get and set system and robot parameters. Both tests were passed, although there were
some modules in the Environment Control Panel that invoked incorrect methods. There
were also some problems with the graphical user interface that displayed incorrectly and
accepted wrong value.

 70

CHAPTER 11

USER MANUAL

1. Introduction
This section will explain how to set up, use and integrate the Communication Model with
other parts in the system. In addition, it provides a brief overview of the Communication
Model and its associated part.

2. Overview
Communication Model for Cooperative Robotics Simulator is a component of
Cooperative Robotics Simulator. It provides communication services to the simulation
system. The Communication Model component mainly interacts with the two parts: the
Environment and the Control Panel. The Environment is the central component of the
system. It starts every service in the system including communication. The Control Panel
is a standalone system that connects to the environment simulator to monitor and control
the current simulation. The Control Panel provides the Communication Model a graphical
user interface to set up communication parameters, which will be delineated in the next
section. The Communication Model uses the Environment as a medium to transfer
messages to a robot. In addition, it also links to the Control Panel via the Environment.
The following diagram shows how these parts link together.

Set parameters

Set parameters

Messages

Messages

Control Panel

Environment

Communication

Robot

Figure 23. Interactions between Communication, Environment, Control Panel and

Robot Diagram

 71

3. Set up

3.1 Required Software
• Java 1.4.2 or later (http://java.sun.com/j2se/1.4.2/download.html)

3.2 Recommended Software
Eclipse (http://www.eclipse.org/downloads/index.php)

3.3 Required Files
• All source code and executable files are included in CommunicatonModel.zip. All

files must be installed under folder
“edu/ksu/cis/cooprobot/simulator/communication/”

• Or Using Eclipse to checkout the source code from the CVS as followed
Select Menu File->Import

Figure 24. Using Eclipse to Check out from CVS – 1

 72

Figure 25. Using Eclipse to Check out from CVS – 2

Select RoboSim and click next (the Communication module is included in RoboSim
project))

 73

Figure 26. Using Eclipse to Check out from CVS – 3

 74

Figure 27. Using Eclipse to Check out from CVS – 4

4. Using Communication Model
The explanation of Communication Model usage will be classified by main users, which
are the Control Panel and the Robot. The Control Panel uses the Communication Model
to set up parameters while Robot uses it for message passing. Most of the functions are
available in CommunicationsSystem object.

4.1 Initialization

The environment is responsible for initializing the Communication System (4.1.1) and
registering robots to the system (4.1.2).

 75

4.1.1 Start up Communication System

CommunicationsSystem comm = new CommunicationsSystem(new
Environment env);

4.1.2 Register a robot to the system

All robots in the system must register to the communication system before starting
communication session. The registration process happens after each robot connected to
the environment. The environment registers a robot to the communication system after
each robot connected to the environment within this method
“setupNewRobot(EnvironmentObjectRobot robot)” The following sequence diagram
explains how registerRobot method is used by the Environment.

 : Robot Environment

EnvironmentRo
botServer

robot :
EnvironmentObjectRobot

 :
CommunicationsSystem

1: EnvironmentRobotServer(port,env)

2: new socket(server,port)

3: registerRobot(connection)

5: setupNewRobot(robot)

4: EnvironmentObjectRobot()

6: requestMyID()

7: myID

8: registerRobot(myID,commType)

Figure 28. Interaction between Robot and Environment for registering robot

• Register a robot with broadcast and point-to-point capability

String robotname = “robotA”;
Int commType = communicationsSystem.BROADCASTANDP2P;
comm.registerRobot(robotname,commType)

• Register a robot with broadcast capability

String robotname = “robotA”;

 76

int commType = communicationsSystem.BROADCAST;
comm.registerRobot(robotname,commType)

• Register a robot with point-to-point capability

String robotname = “robotA”;
int commType = communicationsSystem.POINT2POINT;
comm.registerRobot(robotname,commType)

4.2 Functions for Control Panel

As stated above, the Control Panel is responsible for setting up communication
parameters. However, the Control Panel have no direct access to the
CommunicationsSystem, it will pass request to the Environment and the Environment
will call CommunicationsSystem method directly. The following sequence diagram
shows how CommunicationsSystem get request and send response back to the
Environment Control Panel. The RequestHandler class in Environment package initiates
a connection between the Environment and the EnvironmentControlPanel. It is
responsible for processing request and returning response back to the Environment
ControlPanel. The RequestHandler will determine what request is and call a
CommunicationsSystem method correspond to that request.

 :
EnvironmentControlPanel

Environment

 :
EnvironmentControlPanelServer

 :
ControlPanelConnection

RequestHandler

 :
CommunicationsSystem

1: EnvironmentControlPanelServer(port,env)

2: new socket(server,port)

3: registerControlPanel(connection)

4: ControlPanelConnection(env,connection)

5: RequestHandler(env,connection)

6: input.read()

7: request()

8: output.write(response)

loop

Figure 29. Interaction between Control Panel and Environment for setting
parameters.

 77

There are two groups of communication parameters, system parameters and robot
parameters. The following tables will describe each kind of parameters.
Parameter
Name

Possible Value Description

System link
status

• True
• False

This parameter controls all links status. If it is set
to true, the message passing is activated. Otherwise
it is not activated. This means messages cannot be
passed around the system.

System Range • -1 (no range
limit)

• Positive
integer

This is a maximum distance limit which all robots
are able to send messages out. All receivers within
this maximum distance from the sender will get the
message.

System Delay • 0 (no delay)
• Positive

integer

This parameter simulates traffic in the system. It
will delay messages to the receivers. Unit of delay
time is in time step, which is set by the
Environment. Time step is about 500 milliseconds.

System
delivery
probability

• 0-100 This parameter simulates a message lost situation.
It applies to all messages traversing in the system.
0 means all messages are lost. 100 means all
messages are delivered.

* Default value
Table 4. System Parameter Description Table.

Parameter
Name

Possible Value Description

Send link
(Outgoing
link)

• True
• False

This parameter controls the outgoing link status of
a robot. If it is set, the robot cannot send any
messages out.

Receive link
(Incoming
link)

• True
• False

This parameter controls the incoming link status of
a robot. If it is set, the robot cannot get any
messages from the other robots.

Range • -1 (no range
limit)

• Positive
integer

The difference between System Range and Robot
Range is that the Robot Range applies to a specific
robot.

Delay • 0 (no delay)
• Positive

integer

It is as same as the system one, but applies to only
messages sent by a specific robot to a particular
robot. Since this parameter will be set for each pair
of robot.

Delivery
probability

• 0-100 It is as same as the system one, but applies to only
messages sent by a specific robot to a particular
robot. Since this parameter will be set for each pair
of robot.

* Default value
Table 5. Robot Parameter Description Table.

 78

In case of both system and robot parameter are set, the value of each parameter will be as
followed

Range = Summation of system range and robot range.
Delay = Summation of system delay and robot delay.
Delivery Probability = Average of system delivery probability and robot delivery
probability.

4.2.1 System Parameter Usage

• Start up all link

comm.startupAllLink();

• Shutdown all link

comm. shutdownAllLink();

• Set system range limit
In this example, the system range is set to 20.

comm.setRange(20);

• Set system delay time
In this example, the system delay is set to 5.

comm.setDelay(5);

• Set system delivery probability
In this example, the system delivery probability is set to 90.

comm.setDeliveryProb(90);

• Get system link status

boolean status = comm.isLinkEnabled();

• Get system range limit

int range = comm.getRange();

• Get system delay time

int delay = comm.getDelay();

 79

• Get system delivery probability

int probability = comm.getDeliveryProb();

4.2.2 Robot Parameter Usage

All these parameters can be set only if the robot has been registered to the
communication system.

• Start up robot’s outgoing link
The outgoing link of “robotA” is activated by the following code.

String robotname = “robotA”;
comm.startUpSendLink(robotname);

• Shutdown robot’s outgoing link

 The outgoing link of “robotA” is deactivated by the following code.

String robotname = “robotA”;
comm.shutdownSendLink(robotname);

• Start up robot’s incoming link
The incoming link of “robotA” is activated by the following code.

String robotname = “robotA”;
comm.startUpReceiveLink(robotname);

• Shutdown robot’s incoming link
The incoming link of “robotA” is deactivated by the following code.

String robotname = “robotA”;
comm.shutdownReceiveLink(robotname);

• Set range limit for a robot

String robotname = “robotA”;
int range = 20;
comm.setRobotRange(robotname,range);

• Set delay time between a pair of robot

String robotname1 = “robotA”;
String robotname2 = “robotB”;

int delay = 5;
comm.setRobotRange(robotname1,robotname2,delay);

or

 80

comm.setRobotRange(robotname2,robotname1,delay);

These two statements are the symmetric operations. Both of them will set delay
time between “robotA” and “robotB” to 5. Therefore, using either one of these
operations will give the same result.

• Set delivery probability between a pair of robot

String robotname1 = “robotA”;
String robotname2 = “robotB”;

int probability = 90;
comm.setRobotDeliveryProb(robotname1,robotname2,probability);

or

comm.setRobotDeliveryProb(robotname2,robotname1,probability);

These two statements are the symmetric operations. Both of these operations will
set delivery probability between “robotA” and “robotB” to 90. Hence, using
either one of these operations will give the same result.

• Get Robot Outgoing Link Status

String robotname = “robotA”;
boolean status = comm.isRobotSendEnabled(robotname);

• Get Robot Incoming Link Status

String robotname = “robotA”;
boolean status = comm.isRobotReceiveEnabled(robotname);

• Get robot broadcast capability status

String robotname = “robotA”;
boolean status = comm.isRobotBroadcastEnabled(robotname);

• Get robot point-to-point capability status

String robotname = “robotA”;
boolean status = comm.isRobotP2PEnabled(robotname);

• Get robot range limit

String robotname = “robotA”;
int range = comm.getRobotRange(robotname);

 81

• Get robot delay time

String robotname1 = “robotA”;
String robotname2 = “robotB”;

int delay = comm.getRobotDelay(robotname1,robotname2);

or

int delay = comm.getRobotDelay(robotname2,robotname1);

These two statements are the symmetric operations. Both of these operations will
return the delay time between “robotA” and “robotB”. As a result, using either
one of these operations will return the same result.

• Get robot delivery probability

String robotname1 = “robotA”;
String robotname2 = “robotB”;

int probability =
comm.getRobotDeliveryProb(robotname1,robotname2);

or

int probability =
comm.getRobotDeliveryProb(robotname2,robotname1);

These two statements are the symmetric operations. Both of these operations will
return delivery probability between “robotA” and “robotB”. Therefore, using
either one of these operations will return the same result.

 82

4.3 Functions for Robot

Sending and Receiving messages are core functions provided for Robot. Since messages
are passed to the Robot via the Environment, all these functions will be used by the
Environment. This sequence diagram describes how to send and receive message within
the Environment package.

 : Robot Environment :
EnvironmentObjectRobot

 :
CommunicationsSystem

1: output.write(message)

2: prepGetEvents()

3: queueEvents()

4: processMessageEventQueue(timestep)

5: myMessageEvent.remove(0)

6: action

7: sendMessage(action.message,timestep)

8: sendoutAllTheMessages(timestep)

9: getMyID()

10: ID

11: getMessage(ID,timestep)

12: messages[]

13: sendMessage(message)

14: output.write(message)

loop until messages is
empty

loop until
myMessageEvent
is empty

loop

Figure 30. Interaction between Robot and Environment for message passing

EnvironmentObjectRobot is the class that establishes TCP/IP connection to Robot. Each
EnvironmentObjectRobot has a queue to keep incoming message from robot. In every
time step the Environment will read messages in this queue and forward to the
CommunicationsSystem by processMessageEventQueue method. The process of
receiving message is done by sendOutAllMessages method. The Environment calls
getMessage method from the CommunicationsSystem and forward these messages to the
EnvironmentObjectRobot to write out to the socket that connects to the robot.

 83

Environment will process sending and receiving messages in every time step. It will
process sending message (processMessageEventQueue) and receiving message
(sendOutAllMessages) respectively, since receivers should get the message without delay
at the same time step as sending time. The following method gets messages at current
time step from every robot and forwards to the communication system

// get message from robot forward to communication system
processMessageEventQueue(currentTime);

private void processMessageEventQueue(long timestep)
{
 for (int i=0; i < robots.size(); i++)
 {
 EnvironmentObjectRobot robot = (EnvironmentObjectRobot)robots.get(i);
 while(!robot.myMessageEvents.isEmpty())
 {
 RobotRequest action =
(RobotRequest)robot.myMessageEvents.remove(0);
 commSystem.sendMessage(action.message, timestep);
 }
 }
}

The following method retrieves each robot’s messages from the communication system
and forwards to the owner robot message by message.

//get message from communication system and forward to robot.
sendOutAllTheMessages(currentTime);

private void sendOutAllTheMessages(long timestep)
{
 for (int i=0; i < robots.size(); i++)
 {
 EnvironmentObjectRobot robot = (EnvironmentObjectRobot)robots.get(i);
 Vector messages = commSystem.getMessage(robot.myID, timestep);
 while(!messages.isEmpty())
 {
 Message mess = (Message) messages.remove(0);
 robot.sendMessage(mess);
 }
 robot.sendMessage(Message.NULL_MESSAGE);
 }
}

 84

4.3.1 Send Message
• Send Broadcast Message
In case of sending broadcast message, the receiver name within Message object
must be “broadcast”.

// create a broadcast message
// robotA is the sender
String sender = “robotA”;
String receiver = “broadcast”;
String content = new String(“broadcast message from A”);
Message msg = new Message(sender,receiver,content);

// set current time step
long timeStep = 1;
comm.sendMessage(msg,timeStep);

• Send point-to-point message

// create a message
// robotA is the sender
String sender = “robotA”;
// robotB is the receiver
String receiver = “robotB”;
String content = new String(“sending a message to B from A”);
Message msg = new Message(sender,receiver,content);

// set current time step
long timeStep = 1;
comm.sendMessage(msg,timeStep);

4.3.2 Receive Message

// Get all messages with time step = 1 for “robotA”
String robotname = “robotA”;
long timeStep = 1;
Vector msgAVector = comm.getMessage(robotname,timeStep);

 85

CHAPTER 11

PROJECT EVALUATION

1. Introduction
The purpose of this project evaluation is to assess the effectiveness of all methodologies
exercised throughout the development of this project and the accuracy of time estimation.
In addition, the product will be reviewed and evaluated whether it has accomplished the
goal presented in the initial overview and for the quality of the product. Furthermore, the
effort utilized in this project will be classified and diagramed. Finally, the future work
regarding add-on features and performance improvement will be described.

2. Usefulness of methodologies

2.1 UML diagram

The Unified Modeling Language (UML) is a standard for object-oriented analysis and
design. It consists of standard diagrams: class diagram, sequence diagram, collaboration
diagram, etc. This standard is very practical and helps communicate with other people
during the first stage of development and analysis. Moreover, with a comprehensive
design and logical diagram, this will assist programmer to develop software and deliver
quality software much more with ease.

2.2 Object Constraint Language

The Unified Modeling Language (UML) has become an industrial standard that has
integrated different modeling notations into a single modeling language notation. It is
beneficial for documenting object-oriented analysis and design.

The UML itself is imprecise and ambiguous, consequently people can interpret
differently. The Object Constraint Language (OCL) has been created to describe
additional integrity constraint in the model to help communicate among users, designers
and programmers. There are several OCL tool available for download. In this project, I
selected USE tool to model UML/OCL. USE tool is a graphical tool modeling UML
class diagram with OCL. It is very constructive and can simulate different scenarios to
validate the specification. Although OCL is easy to read and write, it would still require
some experience in UML and OCL before starting the project.

Mostly, I spent a lot of time on this project creating and validating the OCL
specifications, since some of constraints are complex and need a lot of effort to test and
verify. Even though many test scripts were created to test against the model to prove that
the specification is correct, the USE tool is a great tool to use for validating the
specification.

 86

3. Estimation

3.1 Number of lines of code
The estimation of number of lines of code for this project predicted in the first phase was
about 1,325 SLOC based on Function Point Analysis (FPA). Due to the reason that I
have less knowledge about this project, the result seems to be overestimated compare
with the second phase estimation, which was only 912 SLOC. The project complexity
estimated in the second phase was less than expected in the first phase, because I gained
more extensive knowledge on this project, which could help me design and develop this
project more precisely. As a result, some of unnecessary output and response were
eliminated which reduced the estimation of number of lines of code down to 912 SLOC.
Nevertheless, the actual number of lines of code is 874 SLOC, which is close to the
estimation.

3.2 Time duration
The estimation of time used to complete this project during the first phase was 661 hours
or 4.35 months based on COCOMO I model. Since there are 152 working hours per
month as Boem stated, 4.35 months*152 hours/month is equal to 661 hours. Conversely,
the time to complete this project was refined during the second phase based on the SLOC
that was decreased to 912 SLOC. Therefore, the project duration changed from 4.35
months or 661 hours to 3.74 months or 568 hours. In addition, the bottom-up approach
estimation was developed during the second phase to estimate the time duration of the
rest of the project or the third phase using Work Breakdown Structure (WBS). The Work
Breakdown Structure estimation was 37 days or 259 hours (more detail is available in the
implementation plan section), which is close to the actual time, which is 229 hours. The
expected and actual finish times are as followed.

Phase Expected Finish Time Actual Finish Time
Phase I February 27, 2004 February 23, 2004
Phase II April 26, 2004 May 5, 2004
Phase III August 19, 2004 October 5,2004

Table 6. Expected and actual finish time for each phase

During the first phase, it was finished ahead of time because I was taking only MSE
project. Hence, the rest of time was dedicated on this project. During the second phase,
the time was delayed because I got an offer to work as a graduate assistant at KSU
foundation. Consequently, I spent about 20 hours a week working at KSU foundation.
As a result, less time spent on the project. During the last phase, the time was also
delayed again due to the reason that I had to go back to my country (Thailand) for about 5
weeks. Importantly, I had difficulties on integrating with the other parts of the system. I
had to modify many parts of the integrated module to work better with my part.
Furthermore, I had to produce a demo GUI for my presentation, which is integrated with
other parts and wrote a document to improve this module in order to run separately from
the Environment module.

 87

The following pie chart diagrams show the work breakdown and total time spent in each
phase.

This diagram shows total time spent break down to each phase.

Phase I
12%

Phase II
30%

Phase III
58%

Figure 31. Phase Time Breakdowns

This chart diagram represents work breakdown time spent during the whole project.

Information
Gathering

7%

Documentation
43%

Design
18%

Coding
16%

Testing
16%

Figure 32. Project Work Breakdowns

 88

This chart diagram shows work breakdown time spent for coding, testing, information
gathering, design and documentation during the first phase.

Information
Gathering

34%

Documentation
34%

Design
13%

Coding
16%

Testing
3%

Figure 33. Phase I Work Breakdown diagram.

This chart diagram displays work breakdown time spent for coding, testing, information
gathering, design and documentation during the second phase.

Information
Gathering

7%

Documentation
37%

Design
38%

Coding
14%

Testing
4%

Figure 34. Phase II Work Breakdown diagram.

 89

This chart diagram illustrates work breakdown time spent for coding, testing, information
gathering, design and documentation during the third phase.

Information
Gathering

2%

Documentation
48%

Design
8%

Coding
17%

Testing
25%

Figure 35. Phase III Work Breakdown diagram.

4. Product quality

With the amount of effort and time spent in this project for designing, documenting,
coding and testing, the final product has accomplished the goal presented in the
requirement specification.

5. Lessons Learned

This project gave me extensive experience in software development process as well as
working in a team. In most cases, inexperience programmers more than likely to
construct a software without thinking about design, as a result, deliver a flawed program
with many bugs and less feature than it is supposed to have. In my opinion, this project
has a great contribution on developing a professional working environment. Planning
and designing is critical for a successful programmer in order to develop a good program
in a timely manner. Planning and design has helped me save a lot of time in coding the
program. I have redesigned the UML diagram several times to make it meet the
requirements. The redesign process sometimes happened while I was coding. I got the
feeling that the iterative software development approach applies to the real situation of
the development process. Unlike the old approach where each step is done before
stepping into the next one, each step in the iterative development process can be modified
while working in the next step. I also received some guidance from the test plan, which I
wrote up before testing. First I did not follow the test plan while I was testing the
software. After I realized that I had a test plan on the shelf, I looked into it and followed

 90

the plan. It had really helped me out on some test cases, which I had overlooked before.
I had to incorporate my part of the program into other people’s program. The
Cooperative Robotic Simulator team meeting, which was held once a week, gave me an
opportunity to communicate with my teammates who provided me some resolutions to
integrate with their parts.

4. Future Work

While all the features listed in Requirement Specification were implemented, more
features should be added to enhance the ability of the system. Furthermore, the
Communication Model should be separated from Environment to give a better
performance. As a result, the future work will be described as two categories, add-on
feature and performance improvement.

4.1 Add-on Feature

The communication model should support multicast communication. To make it better, it
should have the features to add robot into the group list and provide functions to join and
leave the group.

4.2 Performance Improvement Guideline

The following is a guideline to redesign the Communication Model to make it
independent from the Environment to provide more efficiency to the system. However,
this is just one of the options to provide more efficient system.

In order to make the Communication Model run separately, a number of connections
need to be constructed. Since the Communication Model has to communicate with the
Robot, the Environment and the Environment Control Panel, three TCP/IP connections
will be generated. The connection between the Communication Model and the Robot is
to pass messages back and forth. The connection between the Communication Model
and the Environment is used for synchronization (update time step) as well as a list of
distance. The list of distance, which is a list of distance between two robots, is used to
determine if a robot is within the range limit of a sender. The last connection, the
Communication Model and the Environment Control Panel, is applied to update the
system and robot parameters.

The protocol of these three connections needs to be clarified. The following is the
example of these protocols.

• Communication Model – Environment Protocol
For each time step, the Environment will send current time step and a list of updated
distance record to the Communication Model automatically. A list of updated
distance record is a list of distance between two robots, which has changed from the
previous time step.

 91

• Communication Model – Robot Protocol
After connection is initiated, Robot sends its name and communication type to the
Communication Model respectively. These two values, robot name and
communication type, are used to register a robot to the communication system. Thus,
Messages will be passed back and forth from this point.

• Communication Model – Environment Control Panel Protocol
This is a two-way communication. The Environment Control Panel will send request
to the communication system and communication system will return a response back
to the Environment Control Panel. Most of request is to set and get system, or robot
parameters.

Class Diagram

This is the modified Communication Model Class Diagram to support the separation.
There are five classes added into this new model, RobotServer, ControlPanelServer,
ControlPanelObject, SendHandler, and ReceiveHandler. RobotServer class acts as a
server socket waiting for connection from robots. The ControlPanelServer class also acts
as a server socket but is used to establish connection to the Environment Control Panel.
The ControlPanelObject class is used to communicate with the Environment Control
Panel. It keeps input and output stream connection to the Environment Control Panel.
This class will be run as a thread.

There are some changes in the current classes, CommunicationsSystem class,
RobotCommRecord class and RobotParameters class, whereas the others will be the
same. Some attributes regarding connection will be added to the
CommunicationsSystem. Also, the CommunicationsSystem class will run as a thread,
since it requires the current time step and a list of distance from the Environment. Some
methods provided in the CommunicationsSytem will be modified to support this changes.
In addition to keep the communication information for a robot, the RobotCommRecord
will create two more processes, sendHandler and receiveHandler. SendHandler is
responsible for managing incoming message from a robot and pass messages to his
queue. ReceiveHandler will handle outgoing message by checking a robot’s queue if
there are messages to be sent out to the robot. SendHandler and ReceiveHandler will run
as threads and handle each robot individually. Finally, distance between a pair of robot
will be added to the RobotParameter class.

More details are shown as diagrams, which are provided in the next section. Class
Diagram will show how new classes tie with the old one and some attributes correspond
to the connection that need to be supplied in each class. Furthermore, the procedures of
the significant functions, which are registering robot, sending message, receiving
message, setting parameter and getting time step, will be described as sequence diagrams.

 92

Message

RobotServer
socket : serverSocket

ControlPanelServer
socket : serverSocket

ControlPanelObject
input : inputStream
output : outputStream

RobotParameters
distance : Double

PriorityQueue

0..n

0..n

+inQueue0..n

+hasMessages0..n

ReceiveHandler
output : ouputStream

RobotCommRecord

1

0..n

+parameterOwner 1

+hasParameters
0..n

1

1

+queueOwner 1

+hasQueue1

0..1

1

+ReceiveHandler 0..1

+ReceiveHandlerOwner
1

SendHandler
input : inputStream

0..1

1 +sendHandler

0..1+sendHandlerOwner

1

CommunicationsSystem
envSocket : Socket
input : inputStream
output : outputStream
timestep : Long 0..11

+robotServer

0..1

+robotServerOwner

1

1

0..1

+controlPanelServerOwner
1

+controlPanelServer

0..1

10..1

+objectOwner
1

+controlPanelObject

0..1

1

0..n

+belongTo1

+robots0..n

Figure 36. Redesigned – Communication Model Class Diagram

 93

Sequence Diagram

• Register Robot – Sequence Diagram

First, CommunicationsSystem starts RobotServer as a server socket and waiting for
connections from robots. Robot establishes connection to the RobotServer. Then,
RobotServer accepts the connection and passes connection to
CommunicationsSystem to register this robot into the system. After that, A
RobotCommRecord is created with robot name, communication type and connection.
Finally, the RobotCommRecord will create sendHandler and receiveHandler to deal
with incoming and outgoing messages.

 : Robot comm : CommunicationsSystem

 : RobotServer

 :
RobotCommRecord

 :
ReceiveHandler

 : PriorityQueue

 : SendHandler

1: RobotServer(port,comm)

2: new socket(server,port)

3: createRobotConnection(connection)

4: registerRobot(name,commtype,connection)

5: RobotCommRecord(name.commtype,connection.comm)
6: sendHandler(connection,comm)

7: receiveHandler(connection)

8: PriorityQueue()

Figure 37. Redesigned – Register Robot Sequence Diagram

 94

• Send Message – Sequence Diagram

Since SendHandler runs as a thread, whenever there is an incoming message written
to the socket, it will read from the socket and process this message by calling
sendMessage method.

 : Robot : SendHandler

1: output.write(message)

2: input.read()

 :
CommunicationsSystem

3: sendMessage(message)

loop

Figure 38. Redesigned – Send Message Sequence Diagram

Although, this sendMessage method is already provided in the
CommunicationsSystem, it requires some changes to make it compatible with the new
system. The previous sendMessage method requires two arguments: message and
time step. However this new system will define the current time step as a public
attribute, the time step argument passing along with the sendMessage method will be
eliminated. Therefore, there will be only message argument passing with the
sendMessage method (as in the third message in the diagram). Moreover, the
sequence diagram of send message will be changed, since the distance between each
pair of robot can be retrieved from the RobotParameter class instead of taking directly
from the Environment. The followings are the redesigned sequence diagram of
sendMessage method in CommunicationsSystem class. The first sequence diagram is
sending broadcast message diagram and the latter is sending point-to-point message.
Both of these diagrams are similar to the current system (as in Chapter 5 , Figure 8
and 9), but the actor, who called the sendMessage method, is changed from the
Environment to the SendHandler. Futhermore, the process of retrieving distance
between two robots is changed from taking from the Environment to get it directly
from the RobotParameter.

 95

 : SendHandler :
CommunicationsSystem

 : Message :
RobotCommRecord

 :
RobotParameters

 : PriorityQueue

1: sendMessage(message)

3: getSender()

2: isLinkEnabled()

4: sender

5: isSendBroadcastEnabled()

6: true

7: isReceiveBroadcastEnabled()

8: true

9: getRange()

10: range

11: getName()

12: receiver

13: getDistance(receiver)
14: getDistance()

15: distance
16: distance

17: getDeliveryProb(receiver)
18: getDeliveryProb()

19: delivery prob
20: delivery prob

21: getDelay(receiver)
22: getDelay()

23: delay
24: delay

25: setReceivedTime(time)

26: addMsgToQueue(message)

27: add(message)

loop for every
RobotCommRecord

Figure 39. Redesigned – CommunicationsSystem Send Broadcast Message Sequence

Diagram

 96

 : SendHandler :
CommunicationsSystem

 : Message :
RobotCommRecord

 :
RobotParameters

 : PriorityQueue

1: sendMessage(message)

2: isLinkEnabled()

3: getSender()

4: sender

5: isSendP2PEnabled()

6: true

9: isReceiveP2PEnabled()

10: true

11: getRange()

12: range

7: getReceiver()

8: receiver

13: getDistance(receiver)
14: getDistance()

15: distance
16: distance

17: getDeliveryProb(receiver)
18: getDeliveryProb()

19: delivery prob
20: delivery prob

21: getDelay(receiver)
22: getDelay()

23: delay
24: delay

25: setReceivedTime(time)

26: addMsgToQueue(message)
27: add(message)

Figure 40. Redesigned – CommunicationsSystem Send Point-to-Point Message

Sequence Diagram

 97

• Receive Message – Sequence Diagram

ReceiveHandler will handle outgoing messages for a robot to which has direct link.
ReceiveHandler also runs as a thread; as a result, each outgoing message will be
delivered to the robot in real time. The getMessage method will return a list of
messages corresponding to the current time step. Finally the messages will be
dispatched to the owner via the socket.

 : Robot :
ReceiveHandler

 :
RobotCommRecord

3: out.write(message)

loop until
message[] is empty

loop

4: input.read()

1: getMessage()

2: message[]

Figure 41. Redesigned – Receive Message Sequence Diagram

Due to the fact that the CommunicationsSystem of the current system acts as the main
interface between the Environment and the Communication Model, every method call
is provided in the CommunicationsSystem. Nevertheless, the new system does not
require this feature; the ReceiveHandler can call getMessage method directly from
the RobotCommRecord instead of calling getMessage method provided in
CommunicationsSytem. Therefore, the getMessage method in
CommunicationsSystem can be removed. However, the getMessage method
provided in the RobotCommRecord will be modified to take no arguments because
the current time step will be defined in the CommunicationsSystem as a public
attribute.

 98

• Set parameters – Sequence Diagram

This task will be done by the Environment Control Panel. CommunicationsSystem
starts the ControlPanelServer which is server socket that is waiting for connection
from the EnvironmentControlPanel. The EnvironmentControlPanel creates a socket
to connect to the ControlPanelServer. After the connection has been created, the
CommunicationsSystem will create a ControlPanelObject to keep the connection
between the CommunicationsSystem and the EnvironmentControlPanel. For every
request from the EnvironmentControlPanel, the ControlPanelObject will process and
return a response back to the EnvironmentControlPanel through the socket.

 :
EnvironmentControlPanel

comm :
CommunicationsSystem

 :
ControlPanelServer

 : ControlPanelObject

1: ControlPanelServer(port,comm)

2: new socket(server,port)

3: createControlPanelConn(connection)

4: ControlPanelObject(connection)

5: output.write(request)
6: input.read()

7: handleRequest(request)

8: out.write(response)

loop

Figure 42. Redesigned – Set Parameter Sequence Diagram

 99

• Get time step and distance from Environment – Sequence Diagram

This section is the process of getting current time step from the Environment. Since
the Environment is the central part of the system, the server socket will be started by
the Environment. As stated in the diagram, this class is EnvironmentCommServer. It
will wait for a connection from the CommunicationsSystem. When the connection
has been established the EnvCommObject will be generated to keep connection
information. Whenever the current time step has been updated, the Environment will
send this information along with a list of updated distance to the EnvCommObject.
After EnvCommObject gets this information, it will inform these changes to the
CommunicationsSystem via the socket and the CommunicationsSystem will update
these two values in the system to reflect the changes.

 : CommunicationsSystem Environment :
EnvironmentCommServer

 :
EnvCommObject

7: input.read()

8: update(timestep,distance[])

1: EnvironmentCommServer(port,env)

2: new socket(server,port)

3: registerCommunication(connection)

4: EnvCommObject(connection)

5: update(timestep,distance[])

6: output.write(timestep,distance[])

loop

loop every
time step

Figure 43. Redesigned – Get Time Step and Distance Sequence Diagram

 100

APPENDIX A

UML/OCL SPECIFICATION

--
-- Description: Formal Requirement Specification based on
-- Communications System for Cooperative Robotics Simulator
-- architecture design using UML/OCL methodology.
--
-- Author: Acharaporn Pattaravanichanon
-- File name: communicationSystem.use
-- Course: CIS895 MSE project
-- Computing and Information Systems Department
-- Kansas State University, Spring 2003
-- Date: March 12, 2004
--
--
--

model Communication

--
-- C L A S S E S
--
class CommunicationsSystem
attributes
 delay : Integer
 range : Integer
 deliveryProb : Integer
 isLinkEnabled : Boolean
operations
 registerRobot(n:String,c:Integer)
 getMessage(n:String,timeStep:Integer):Set(Message)
 sendMessage(msg:Message,timeStep:Integer)
 processBroadcast()
 processP2P()
 distributeMessage()
 getRobotCommRecord():RobotCommRecord
 setDelay(delay:Integer)
 setRange(range:Integer)
 setDeliveryProb(prob:Integer)
 startupAllLink()
 shutdownAllLink()
 setRobotDelay(sender:String,receiver:String,delay:Integer)
 setRobotRange(name:String,range:Integer)
 setRobotDeliveryProb(sender:String,receiver:String,prob:Integer)
 startupSendLink(name:String)
 startupReceiveLink(name:String)
 shutdownSendLink(name:String)
 shutdownReceiveLink(name:String)
 isLinkEnabled():Boolean
end

 101

class RobotCommRecord
attributes
 name : String
 range : Integer
 isSendLinkEnabled : Boolean
 isReceiveLinkEnabled : Boolean
 isBroadcastEnabled : Boolean
 isP2PEnabled : Boolean
operations
 getMessage(timeStep:Integer):Set(Message)
 startupSendLink()
 startupReceiveLink()
 shutdownSendLink()
 shutdownReceiveLink()
 enableBroadcast()
 enableP2P()
 disableBroadcast()
 disableP2P()
 isSendLinkEnabled():Boolean
 isReceiveLinkEnabled():Boolean
 isBroadcastEnabled():Boolean
 isP2PEnabled():Boolean
 isSendBroadcastEnabled():Boolean
 isReceiveBroadcastEnabled():Boolean
 isSendP2PEnabled():Boolean
 isReceiveP2PEnabled():Boolean
 getRobotParameter():RobotParameter
 getDelay(name:String):Integer
 getRange():Integer
 getDeliveryProb(name:String):Integer
 addMsgToQueue(msg:Message):Boolean
 setCommType(commType:Integer)
end

class RobotParameter
attributes
 receiverName : String
 delayTime : Integer
 deliverProb : Integer
operations
 getReceiveName():String
 getDelay():Integer
 getDeliveryProb():Integer
 setReceiveName(name:String)
 setDelay(delay:Integer)
 setDeliveryProb(prob:Integer)
end

class PriorityQueue
attributes
operations
 add(msg:Message):Boolean
 get(index:Integer):Message
 remove(index:Integer):Message
 isEmpty():Boolean

 102

end

class Message
attributes
 sender : String
 receiver : String
 content : OclAny
 receivedTime : Integer
 sentTime : Integer
operations
 setSender(name:String)
 setReceiver(name:String)
 setContent(content:OclAny)
 setReceivedTime(time:Integer)
 setSentTime(time:Integer)
 getSender():String
 getReceiver():String
 getContent():OclAny
 getReceivedTime():Integer
 getSentTime():Integer
 isBroadcastMessage():Boolean
 isP2PMessage():Boolean
end

--
-- A S S O C I A T I O N S
--

-- robot: a communication system consists of many robots

association robot between
 CommunicationsSystem[1] role belongTo
 RobotCommRecord[*] role robots
end

-- parameter : a RobotCommRecord has a list of robot parameter

association parameter between
 RobotCommRecord[1] role parameterOwner
 RobotParameter[*] role hasParameters
end

-- queue : a RobotCommRecord has a priorityQueue

association queue between
 RobotCommRecord[1] role queueOwner
 PriorityQueue[1] role hasQueue
end

-- message : A queue consists of some messages

association message between
 PriorityQueue[*] role inQueue
 Message[*] role hasMessages ordered
end

 103

--
-- C O N S T R A I N T S
--

constraints

--
-- UniqueName
-- Robot has unique name
--

context RobotCommRecord
 inv UniqueName:
 RobotCommRecord.allInstances->forAll(p1,p2| p1 <> p2
 implies p1.name <> p2.name)

--
-- BroadcastAbility:
-- Robot has broadcast ability can send and receive broadcast messages.
--

context RobotCommRecord
 inv BroadcastAbility1:
 RobotCommRecord.allInstances.hasQueue.hasMessages
 ->select(receiver='broadcast' and sender=self.name)->notEmpty
 implies self.isBroadcastEnabled = true

context r:RobotCommRecord
 inv BroadcastAbility2:
 r.hasQueue.hasMessages
 ->select(receiver='broadcast')->notEmpty
 implies r.isBroadcastEnabled = true

--
-- P2PAbility
-- Robot has point-to-point ability can send and receive point-to-point
-- messages.
--

context RobotCommRecord
 inv P2PAbility1:
 RobotCommRecord.allInstances.hasQueue.hasMessages
 ->select(receiver <> 'broadcast'
 and sender=self.name)->notEmpty
 implies self.isP2PEnabled = true

context r:RobotCommRecord
 inv P2PAbility2:
 r.hasQueue.hasMessages
 ->select(receiver <> 'broadcast')->notEmpty
 implies r.isP2PEnabled = true

 104

--
-- sendAbility
-- Robot with active send link can send messages to other robots
--

context RobotCommRecord
 inv sendAbility:
 RobotCommRecord.allInstances.hasQueue.hasMessages
 ->select(sender=self.name)->notEmpty
 implies self.isSendLinkEnabled = true

--
-- receiveAbility
-- Robot with active receive link can receive messages from other
robots
--

context r:RobotCommRecord
 inv receiveAbility:
 r.hasQueue.hasMessages->notEmpty
 implies r.isReceiveLinkEnabled = true

--
-- rightQueue
-- Messages are distributed to the right robot queue
--

context RobotCommRecord
 inv rightQueue:
 hasQueue.hasMessages->
 forAll((receiver=self.name) or (receiver='broadcast'))

--
-- priorityQueue
-- The messages in priorityQueue are ordered by received time
--
--

context p:PriorityQueue
 inv priorityQueue:
 Sequence{1..(p.hasMessages->size-1)}->
 forAll(i | p.hasMessages->at(i).receivedTime
 <= p.hasMessages->at(i+1).receivedTime)
--
-- rightTime
-- If received time is defined, then received time is equal or greater
-- than sent time.
--

context m:Message
 inv rightTime:
 m.receivedTime.isDefined implies m.receivedTime >= m.sentTime

 105

--
-- allLinkShutdown
-- Robots cannot send or receive any messages if all the links are --
-- shutdown
--

context c:CommunicationsSystem
 inv allLinkShutdown:
 RobotCommRecord.allInstances.hasQueue.hasMessages->notEmpty
 implies c.isLinkEnabled = true

--
-- sendToYourself
-- Robots cannot get the messages which are sent my themselves.
--

context r:RobotCommRecord
 inv sendToYourself:
 r.hasQueue.hasMessages->forAll(sender <> r.name)

--
-- O P E R A T I O N S
--
-- registerRobot pre/post-conditions
-- .. pre-conditions
-- 1. robot name (n) is defined
-- 2. communication type (c) is defined
-- 3. c must be only 1,2 or 3
-- 4. there's no exist robot named "n" in the RobotCommRecord set
-- .. post-conditions
-- 1. new Robot named "n" is created
-- 2. new set of RobotCommRecord is the previous set plus new
-- robot named "n"
-- 3. there is only one record of RobotCommRecord which is named
-- "n"
-- 4. if c=1 then Robot has broadcast capability
-- 5. if c=2 then Robot has Point-to-point capability
-- 6. if c=3 then Robot has both broadcast and point-to-point
-- capability

context CommunicationsSystem::registerRobot(n:String,c:Integer)
 pre precond_1: n.isDefined
 pre precond_2: c.isDefined
 pre precond_3: (c=1 or c=2 or c=3)
 pre precond_4: robots->select(name=n)->isEmpty
 post postcond_1: robots->exists(r | r.oclIsNew and r.name = n)
 post postcond_2: robots=robots@pre->union(robots->select(name=n))
 post postcond_3: robots->select(name=n)->size = 1
 post postcond_4: (c=1) implies robots->select(name=n and
 isBroadcastEnabled=true
 and isP2PEnabled=false)->notEmpty
 post postcond_5: (c=2) implies robots->select(name=n and
 isP2PEnabled=true and
 isBroadcastEnabled=false)->notEmpty
 post postcond_6: (c=3) implies robots->select(name=n and
 isBroadcastEnabled=true and

 106

 isP2PEnabled=true)->notEmpty

--
-- sendMessage pre/post-conditions
-- .. pre-conditions
-- 1. timeStep is greater than zero
-- 2. message is defined
-- 3. sender is defined
-- 4. receiver is defined
-- 5. System link is enabled
-- 6. sender's send link is active
-- 7. if it is broadcast message, sender has broadcast capability
-- 8. if it is point-to-point message, sender has point-to-point
-- capability
--
-- .. post-conditions
-- 1. sentTime which is timeStep is added to the Message
-- 2,3. receivedTime is added based on system delay and robot ---
-- delay
-- The msg is added to the receiver's queue
-- 4. if it is broadcast message then
-- message is added to all robot's queue except sender's --
-- queue
-- 5. if it is Point-to-point message then
-- the message is added to the specified robot's queue

context CommunicationsSystem::sendMessage(msg:Message,timeStep:Integer)
 pre precond_1: timeStep > 0 and timeStep.isDefined
 pre precond_2: msg.isDefined
 pre precond_3: msg.sender.isDefined
 pre precond_4: msg.receiver.isDefined
 pre precond_5: isLinkEnabled = true
 pre precond_6: robots->select(name=msg.sender)
 ->forAll(isSendLinkEnabled = true)
 pre precond_7: msg.receiver = 'broadcast'
 implies robots->select(name=msg.sender)->
 forAll(isBroadcastEnabled = true)
 pre precond_8: msg.receiver <> 'broadcast'
 implies robots->select(name=msg.sender)->
 forAll(isP2PEnabled = true)

 post postcond_1: msg.sentTime = timeStep
 post postcond 2: msg.receiver <> 'broadcast' implies
 robots->select(name=msg.sender)->
 forAll(hasParameters->
 forAll(receiverName=msg.receiver implies
 msg.receivedTime = parameterOwner.belongTo.delay
 + timeStep + delayTime))

 post postcond 3: msg.receiver = 'broadcast' implies
 robots->select(name=msg.sender)->
 forAll(hasParameters->
 forAll(msg.receivedTime =
 parameterOwner.belongTo.delay
 + timeStep + delayTime))

 107

 post postcond_4: msg.receiver = 'broadcast' implies
 robots->select(name <> msg.sender
 and isReceiveLinkEnabled = true
 and isBroadcastEnabled = true)
 ->forAll(r| r.hasQueue.hasMessages->asSet
 = r.hasQueue.hasMessages@pre
 ->including(msg)->asSet)

 post postcond_5: msg.receiver <> 'broadcast' implies
 robots->select(name = msg.receiver
 and isReceiveLinkEnabled = true
 and isP2PEnabled = true)
 ->forAll(r| r.hasQueue.hasMessages->asSet
 = r.hasQueue.hasMessages@pre
 ->including(msg)->asSet)

--
-- getMessage pre/post-conditions
-- .. pre-conditions
-- 1. n (robot name) is defined
-- 2. robot named n exists in the system
-- 3. timestep is defined
-- 4. timestep is greater than zero
--
-- .. post-conditions
-- 1. The messages in priority queue of robot n
-- excludes message which has receivedTime = timestep
-- 2. Return result which is a set of messages
-- which receivedTime = timestep
--

context CommunicationsSystem::getMessage(n:String,timeStep:Integer)
:Set(Message)
 pre precond_1: n.isDefined
 pre precond_2: robots.exists(r| r.name=n)
 pre precond_3: timeStep.isDefined
 pre precond_4: timeStep > 0
 post postcond_1: robots->select(name = n)
 ->forAll(r | r.hasQueue.hasMessages->asSet
 = r.hasQueue.hasMessages@pre->asSet
 - r.hasQueue.hasMessages@pre
 ->select(receivedTime = timeStep)->asSet)

 post postcond_2: robots->select(name=n)
 ->forAll(r| result = r.hasQueue.hasMessages@pre
 ->select(receivedTime = timeStep)->asSet)

 108

APPENDIX B

USE TEST SCRIPT

All test scripts are used counter example to test the correctness of the specification.

1. Robots Robot has unique name.

Scenario: The test script has two robots named “A”

!create comm1:CommunicationsSystem
!set comm1.isLinkEnabled = true

!create robotA:RobotCommRecord
!create robotB:RobotCommRecord
!set robotA.name = 'A'
!set robotB.name = 'A'

!insert (comm1,robotA) into robot
!insert (comm1,robotB) into robot

!create queue1:PriorityQueue
!create queue2:PriorityQueue
!insert (robotA,queue1) into queue
!insert (robotB,queue2) into queue

 109

Figure 44. USE Object Diagram – UniqueName Constraint

5. Only robot with broadcast ability can send and receive broadcast
message.

Scenario 1: RobotB and RobotC received a broadcast message from RobotA which
broadcast is disabled.

!create comm1:CommunicationsSystem
!set comm1.isLinkEnabled = true

!create robotA:RobotCommRecord
!create robotB:RobotCommRecord
!create robotC:RobotCommRecord

!set robotA.name = 'A'
!set robotB.name = 'B'
!set robotC.name = 'C'
!set robotA.isBroadcastEnabled = false
!set robotA.isSendLinkEnabled = true
!set robotA.isReceiveLinkEnabled = true

 110

!set robotB.isBroadcastEnabled = true
!set robotB.isSendLinkEnabled = true
!set robotB.isReceiveLinkEnabled = true

!set robotC.isBroadcastEnabled = true
!set robotC.isSendLinkEnabled = true
!set robotC.isReceiveLinkEnabled = true

!insert (comm1,robotA) into robot
!insert (comm1,robotB) into robot
!insert (comm1,robotC) into robot

!create queueA:PriorityQueue
!create queueB:PriorityQueue
!create queueC:PriorityQueue

!insert (robotA,queueA) into queue
!insert (robotB,queueB) into queue
!insert (robotC,queueC) into queue

!create msg1:Message
!set msg1.sender = 'A'
!set msg1.receiver = 'broadcast'

!insert (queueB,msg1) into message
!insert (queueC,msg1) into message

 111

Figure 45. USE Object Diagram – BroadcastAbility1 Constraint

Scenario2: RobotB with disabled broadcast ability received a broadcast message from
RobotA.

!create comm1:CommunicationsSystem
!set comm1.isLinkEnabled = true

!create robotA:RobotCommRecord
!create robotB:RobotCommRecord
!create robotC:RobotCommRecord

!set robotA.name = 'A'
!set robotB.name = 'B'
!set robotC.name = 'C'
!set robotA.isBroadcastEnabled = true
!set robotA.isSendLinkEnabled = true
!set robotA.isReceiveLinkEnabled = true

!set robotB.isBroadcastEnabled = false
!set robotB.isSendLinkEnabled = true
!set robotB.isReceiveLinkEnabled = true

!set robotC.isBroadcastEnabled = true
!set robotC.isSendLinkEnabled = true
!set robotC.isReceiveLinkEnabled = true

!insert (comm1,robotA) into robot
!insert (comm1,robotB) into robot
!insert (comm1,robotC) into robot

!create queueA:PriorityQueue
!create queueB:PriorityQueue
!create queueC:PriorityQueue

!insert (robotA,queueA) into queue
!insert (robotB,queueB) into queue
!insert (robotC,queueC) into queue

!create msg1:Message
!set msg1.sender = 'A'
!set msg1.receiver = 'broadcast'

!insert (queueB,msg1) into message
!insert (queueC,msg1) into message

 112

Figure 46. USE Object Diagram – BroadcastAbility2 Constraint

 113

6. Only robot with point-to-point ability can send and receive point-to-
point message.

Scenario 1: RobotB received a message from RobotA which point-to-point is disabled.

!create comm1:CommunicationsSystem
!set comm1.isLinkEnabled = true

!create robotA:RobotCommRecord
!create robotB:RobotCommRecord

!set robotA.name = 'A'
!set robotB.name = 'B'
!set robotA.isBroadcastEnabled = true
!set robotA.isP2PEnabled = false
!set robotA.isSendLinkEnabled = true
!set robotA.isReceiveLinkEnabled = true

!set robotB.isBroadcastEnabled = false
!set robotB.isP2PEnabled = true
!set robotB.isSendLinkEnabled = true
!set robotB.isReceiveLinkEnabled = true

!insert (comm1,robotA) into robot
!insert (comm1,robotB) into robot

!create queueA:PriorityQueue
!create queueB:PriorityQueue

!insert (robotA,queueA) into queue
!insert (robotB,queueB) into queue

!create msg1:Message
!set msg1.sender = 'A'
!set msg1.receiver = 'B'

!insert (queueB,msg1) into message

 114

Figure 47. USE Object Diagram – P2PAbility1 Constraint

Scenario 2: RobotB with disabled point-to-point ability received a message from RobotA.

!create comm1:CommunicationsSystem
!set comm1.isLinkEnabled = true

!create robotA:RobotCommRecord
!create robotB:RobotCommRecord

!set robotA.name = 'A'
!set robotB.name = 'B'
!set robotA.isBroadcastEnabled = true
!set robotA.isP2PEnabled = true
!set robotA.isSendLinkEnabled = true
!set robotA.isReceiveLinkEnabled = true

!set robotB.isBroadcastEnabled = false
!set robotB.isP2PEnabled = false
!set robotB.isSendLinkEnabled = true
!set robotB.isReceiveLinkEnabled = true

 115

!insert (comm1,robotA) into robot
!insert (comm1,robotB) into robot

!create queueA:PriorityQueue
!create queueB:PriorityQueue

!insert (robotA,queueA) into queue
!insert (robotB,queueB) into queue

!create msg1:Message
!set msg1.sender = 'A'
!set msg1.receiver = 'B'

!insert (queueB,msg1) into message

Figure 48. USE Object Diagram – P2Pability2 Constraint

7. Only robot with active send link can send message.

Scenario: RobotB received a message from RobotA which outgoing link is disabled

 116

!create comm1:CommunicationsSystem
!set comm1.isLinkEnabled = true

!create robotA:RobotCommRecord
!create robotB:RobotCommRecord

!set robotA.name = 'A'
!set robotB.name = 'B'
!set robotA.isBroadcastEnabled = true
!set robotA.isP2PEnabled = true
!set robotA.isSendLinkEnabled = false
!set robotA.isReceiveLinkEnabled = true

!set robotB.isBroadcastEnabled = false
!set robotB.isP2PEnabled = true
!set robotB.isSendLinkEnabled = true
!set robotB.isReceiveLinkEnabled = true
!insert (comm1,robotA) into robot
!insert (comm1,robotB) into robot

!create queueA:PriorityQueue
!create queueB:PriorityQueue
!insert (robotA,queueA) into queue
!insert (robotB,queueB) into queue

!create msg1:Message
!set msg1.sender = 'A'
!set msg1.receiver = 'B'

!insert (queueB,msg1) into message

 117

Figure 49. USE Object Diagram – SendAbility Constraint

8. Only robot with active receive link can receive message.

Scenario: RobotB with disabled incoming link received a message from RobotA,

!create comm1:CommunicationsSystem
!set comm1.isLinkEnabled = true

!create robotA:RobotCommRecord
!create robotB:RobotCommRecord

!set robotA.name = 'A'
!set robotB.name = 'B'
!set robotA.isBroadcastEnabled = true
!set robotA.isP2PEnabled = true
!set robotA.isSendLinkEnabled = true
!set robotA.isReceiveLinkEnabled = true

 118

!set robotB.isBroadcastEnabled = true
!set robotB.isP2PEnabled = true
!set robotB.isSendLinkEnabled = true
!set robotB.isReceiveLinkEnabled = false

!insert (comm1,robotA) into robot
!insert (comm1,robotB) into robot

!create queueA:PriorityQueue
!create queueB:PriorityQueue

!insert (robotA,queueA) into queue
!insert (robotB,queueB) into queue

!create msg1:Message
!set msg1.sender = 'A'
!set msg1.receiver = 'B'

!insert (queueB,msg1) into message

Figure 50. USE Object Diagram – ReceiveAbility Constraint

 119

9. Messages are kept into the right queue.

Scenario: RobotC’s priorityQueue has a message which belongs to A.

!create comm1:CommunicationsSystem
!set comm1.isLinkEnabled = true

!create robotA:RobotCommRecord
!create robotB:RobotCommRecord
!create robotC:RobotCommRecord

!set robotA.name = 'A'
!set robotB.name = 'B'
!set robotC.name = 'C'
!set robotA.isBroadcastEnabled = true
!set robotA.isP2PEnabled = true
!set robotA.isSendLinkEnabled = true
!set robotA.isReceiveLinkEnabled = true

!set robotB.isBroadcastEnabled = true
!set robotB.isP2PEnabled = true
!set robotB.isSendLinkEnabled = true
!set robotB.isReceiveLinkEnabled = true

!set robotC.isBroadcastEnabled = true
!set robotC.isP2PEnabled = true
!set robotC.isSendLinkEnabled = true
!set robotC.isReceiveLinkEnabled = true

!insert (comm1,robotA) into robot
!insert (comm1,robotB) into robot
!insert (comm1,robotC) into robot

!create queueA:PriorityQueue
!create queueB:PriorityQueue
!create queueC:PriorityQueue

!insert (robotA,queueA) into queue
!insert (robotB,queueB) into queue
!insert (robotC,queueC) into queue

!create msg1:Message
!set msg1.sender = 'A'
!set msg1.receiver = 'B'

!insert (queueC,msg1) into message

 120

Figure 51. USE Object Diagram – RightQueue Constraint

10. Messages are kept in priority queue ordered by received time.

Scenario: QueueB has msg2, which received time is 2,located before msg1, which
received time is 1

!create comm1:CommunicationsSystem
!set comm1.isLinkEnabled = true

!create robotA:RobotCommRecord
!create robotB:RobotCommRecord
!create robotC:RobotCommRecord

!set robotA.name = 'A'
!set robotB.name = 'B'
!set robotC.name = 'C'
!set robotA.isBroadcastEnabled = true
!set robotA.isP2PEnabled = true
!set robotA.isSendLinkEnabled = true

 121

!set robotA.isReceiveLinkEnabled = true

!set robotB.isBroadcastEnabled = true
!set robotB.isP2PEnabled = true
!set robotB.isSendLinkEnabled = true
!set robotB.isReceiveLinkEnabled = true

!set robotC.isBroadcastEnabled = true
!set robotC.isP2PEnabled = true
!set robotC.isSendLinkEnabled = true
!set robotC.isReceiveLinkEnabled = true

!insert (comm1,robotA) into robot
!insert (comm1,robotB) into robot
!insert (comm1,robotC) into robot

!create queueA:PriorityQueue
!create queueB:PriorityQueue
!create queueC:PriorityQueue

!insert (robotA,queueA) into queue
!insert (robotB,queueB) into queue
!insert (robotC,queueC) into queue

!create msg1:Message
!create msg2:Message

!set msg1.sender = 'A'
!set msg1.receiver = 'B'
!set msg1.sentTime = 1
!set msg1.receivedTime = 1
!set msg2.sender = 'C'
!set msg2.receiver = 'B'
!set msg2.sentTime = 2
!set msg2.receivedTime = 2

!insert (queueB,msg2) into message
!insert (queueB,msg1) into message

 122

Figure 52. USE Object Diagram – PriotityQueue Constraint

11. If message’s received time is defined, then received time is equal or
greater than sent time.

Scenario: msg1 has received time equals to 1 which is less then sent time which is 2

!create msg1:Message
!set msg1.sender = 'A'
!set msg1.receiver = 'broadcast'
!set msg1.sentTime = 2
!set msg1.receivedTime = 1

 123

Figure 53. USE Object Diagram – RightTime Constraint

12. If all links are shutdown, robot cannot send or receive message.

Scenario: All links in the system is shutdown, but RobotB received a message.

!create comm1:CommunicationsSystem
!set comm1.isLinkEnabled = false

!create robotA:RobotCommRecord
!create robotB:RobotCommRecord

!set robotA.name = 'A'
!set robotB.name = 'B'
!set robotA.isBroadcastEnabled = true
!set robotA.isP2PEnabled = true
!set robotA.isSendLinkEnabled = true
!set robotA.isReceiveLinkEnabled = true

!set robotB.isBroadcastEnabled = true
!set robotB.isP2PEnabled = true
!set robotB.isSendLinkEnabled = true
!set robotB.isReceiveLinkEnabled = true

!insert (comm1,robotA) into robot
!insert (comm1,robotB) into robot

!create queueA:PriorityQueue
!create queueB:PriorityQueue

!insert (robotA,queueA) into queue
!insert (robotB,queueB) into queue

!create msg1:Message
!set msg1.sender = 'A'
!set msg1.receiver = 'B'

!insert (queueB,msg1) into message

 124

Figure 54. USE Object Diagram – AllLinkShutdown Constraint

13. Robots cannot receive their own sending message.

Scenario: RobotA received a message, which is sent by him.

!create comm1:CommunicationsSystem
!set comm1.isLinkEnabled = true

!create robotA:RobotCommRecord
!create robotB:RobotCommRecord

!set robotA.name = 'A'
!set robotB.name = 'B'
!set robotA.isBroadcastEnabled = true
!set robotA.isP2PEnabled = true
!set robotA.isSendLinkEnabled = true
!set robotA.isReceiveLinkEnabled = true

 125

!set robotB.isBroadcastEnabled = true
!set robotB.isP2PEnabled = true
!set robotB.isSendLinkEnabled = true
!set robotB.isReceiveLinkEnabled = true

!insert (comm1,robotA) into robot
!insert (comm1,robotB) into robot

!create queueA:PriorityQueue
!create queueB:PriorityQueue

!insert (robotA,queueA) into queue
!insert (robotB,queueB) into queue

!create msg1:Message
!set msg1.sender = 'A'
!set msg1.receiver = 'broadcast'

!insert (queueA,msg1) into message

Figure 55. USE Object Diagram – SendToYourSelf Constraint

 126

14. registerRobot Operation

Scenario: The script adds new Robot named A which already exists in the system. This
script violates post condition 1,2,3 and 5.
!create comm1:CommunicationsSystem
!set comm1.isLinkEnabled = true
!create RobotA:RobotCommRecord
!set RobotA.name ='A'
!insert (comm1,RobotA) into robot
!create queueA:PriorityQueue
!insert (RobotA,queueA) into queue
!openter comm1 registerRobot('A',2)

!create RobotB:RobotCommRecord
!set RobotB.name = 'A'
!set RobotB.isP2PEnabled = true
!set RobotB.isBroadcastEnabled = false
!insert (comm1,RobotB) into robot
!create queueB:PriorityQueue
!insert (RobotB,queueB) into queue

!opexit

15. SendMessage operation

Scenario: There is no message added to RobotB’s priorityQueue after message is sent.
This script violates post condition 5.

!create comm1:CommunicationsSystem
!set comm1.isLinkEnabled = true
!set comm1.delay = 2
!create RobotA:RobotCommRecord
!set RobotA.name ='A'
!set RobotA.isP2PEnabled = true
!set RobotA.isBroadcastEnabled = true
!set RobotA.isSendLinkEnabled = true
!set RobotA.isReceiveLinkEnabled = true
!insert (comm1,RobotA) into robot
!create queueA:PriorityQueue
!insert (RobotA,queueA) into queue
!create msg1:Message
!set msg1.sender = 'A'
!set msg1.receiver = 'B'

!create Param1:RobotParameter
!set Param1.receiverName = 'B'
!set Param1.delayTime = 1
!insert (RobotA,Param1) into parameter

!create RobotB:RobotCommRecord
!set RobotB.name = 'B'
!set RobotB.isP2PEnabled = true
!set RobotB.isBroadcastEnabled = false

 127

!set RobotB.isSendLinkEnabled = true
!set RobotB.isReceiveLinkEnabled = true
!insert (comm1,RobotB) into robot
!create queueB:PriorityQueue
!insert (RobotB,queueB) into queue

!create Param2:RobotParameter
!set Param2.receiverName = 'A'
!set Param2.delayTime = 1
!insert (RobotB,Param2) into parameter

!openter comm1 sendMessage(msg1,1)
!set msg1.sentTime = 1
!set msg1.receivedTime = 4

!opexit

16. GetMessage Operation

Scenario1: There is no message removed from RobotB’s priorityQueue after calling
getMessage operation. (It is supposed to remove the messages which received time is
equal to current time step. For this case, message msg1 and msg2 should be removed and
the result should return msg1 and msg2). This script violates post condition 1.
!create comm1:CommunicationsSystem
!set comm1.isLinkEnabled = true
!create RobotA:RobotCommRecord
!set RobotA.name ='A'
!set RobotA.isP2PEnabled = true
!set RobotA.isBroadcastEnabled = true
!set RobotA.isSendLinkEnabled = true
!set RobotA.isReceiveLinkEnabled = true
!insert (comm1,RobotA) into robot
!create queueA:PriorityQueue
!insert (RobotA,queueA) into queue
!create msg1:Message
!set msg1.sender = 'A'
!set msg1.receiver = 'B'

!create RobotB:RobotCommRecord
!set RobotB.name = 'B'
!set RobotB.isP2PEnabled = true
!set RobotB.isBroadcastEnabled = true
!set RobotB.isSendLinkEnabled = true
!set RobotB.isReceiveLinkEnabled = true
!insert (comm1,RobotB) into robot
!create queueB:PriorityQueue
!insert (RobotB,queueB) into queue
!set msg1.sentTime = 1
!set msg1.receivedTime = 1

!create msg2:Message
!set msg2.sender = 'A'
!set msg2.receiver = 'B'

 128

!set msg2.sentTime = 1
!set msg2.receivedTime = 1
!insert (queueB,msg2) into message
!insert (queueB,msg1) into message

!openter comm1 getMessage('B',1)
!opexit Set{msg1,msg2}

Scenario2: There is only one message which received time is 1 in RobotB’s queue, but the
result returns two messages, msg1 and msg2. This script violates post condition 2.

!create comm1:CommunicationsSystem
!set comm1.isLinkEnabled = true
!create RobotA:RobotCommRecord
!set RobotA.name ='A'
!set RobotA.isP2PEnabled = true
!set RobotA.isBroadcastEnabled = true
!set RobotA.isSendLinkEnabled = true
!set RobotA.isReceiveLinkEnabled = true
!insert (comm1,RobotA) into robot
!create queueA:PriorityQueue
!insert (RobotA,queueA) into queue
!create msg1:Message
!set msg1.sender = 'A'
!set msg1.receiver = 'B'

!create RobotB:RobotCommRecord
!set RobotB.name = 'B'
!set RobotB.isP2PEnabled = true
!set RobotB.isBroadcastEnabled = true
!set RobotB.isSendLinkEnabled = true
!set RobotB.isReceiveLinkEnabled = true
!insert (comm1,RobotB) into robot
!create queueB:PriorityQueue
!insert (RobotB,queueB) into queue

!set msg1.sentTime = 2
!set msg1.receivedTime = 2

!create msg2:Message
!set msg2.sender = 'A'
!set msg2.receiver = 'B'
!set msg2.sentTime = 1
!set msg2.receivedTime = 1
!insert (queueB,msg2) into message
!insert (queueB,msg1) into message

!openter comm1 getMessage('B',1)
!delete (queueB,msg2) from message
!opexit Set{msg1,msg2}

 129

APPENDIX C

FORMAL INSPECTION CHECKLIST

• Formal Inspection Checklist – Kevin Sung

Inspection list Pass/Fail/Partial Comment

1. The symbols using in use case
diagram conform to UML
diagram.

Pass

2. The symbols using in class case
diagram conform to UML
diagram.

Pass

3. The symbols using in sequence
diagram conform to UML
diagram.

Pass

4. Use case diagram and
descriptions are clear and well
organized.

Pass

5. Class diagram and descriptions
are clear and well organized.

Pass

6. Each message passing in
sequence diagram is the method
in class diagram.

Pass

7. Each message passing in
sequence diagram must be
defined as public method.

Pass

8. Class names are well defined
and indicate their meaning

Pass

9. The architecture design covers
the entire requirement defined in
Software Requirement
Specification.

Pass

Table 7. Formal Technical Inspection Checklist - Kevin

 130

• Formal Inspection Checklist – Estaban Guillen

Inspection list Pass/Fail/Partial Comment
1. The symbols using in use case
diagram conform to UML
diagram.

Pass It looks good

2. The symbols using in class case
diagram conform to UML
diagram.

Pass It looks good

3. The symbols using in sequence
diagram conform to UML
diagram.

Pass It looks good

4. Use case diagram and
descriptions are clear and well
organized.

Pass Yes it was clear to me

5. Class diagram and descriptions
are clear and well organized.

Pass I had a few questions. I didn’t
see a constructor for the
RobotParameter class and was
wondering how it would get
created. Also in the
RobotParamater class there are
four “get” methods but there are
no return types shown.

6. Each message passing in
sequence diagram is the method
in class diagram.

Pass Yes it matches up

7. Each message passing in
sequence diagram must be
defined as public method.

Pass Yes

8. Class names are well defined
and indicate their meaning

Pass Yes

9. The architecture design covers
the entire requirement defined in
Software Requirement
Specification.

Pass Yes nice work. I just had a
question about section 4.3 in
your Architecture Design doc.
The sequence diagram looks
good, but the description above
talks about sending broadcast
messages while the diagram is
showing point-to-point.

Table 8. Formal Technical Inspection Checklist - Esteban

 131

APPENDIX D

FORMAL INSPECTION LETTER

To Whom It May Concern:

I, Kevin Sung, have checked and confirm the documentation have fulfilled the
criteria that is listed in the Formal Inspection Checklist

Kevin Sung

 132

Dr. Hsu and Committees:

I have completed the Formal Inspection Checklist for the Architecture design of
the Communication Model for Cooperative Robotics Simulator Project. I have not found
any critical problems and all items in the checklist are passed.

Esteban Guillen

 133

REFERENCES

Lee, Richard C., Tepfenhart, William M., Practical Object-Oriented Development With

UML and Java, Prentice Hall, 2002.

Warmer, Jos B., Kleppe, Anneke G., The Object Constraint Language Precise Modeling
with UML, Addison-Wesley, 1998.

Royce, Walker. Software Project Management A unified framework, 1st ed. Addison-

Wesley, 1998.

Pressman, Roger. Software Engineering a practitioner’s approach, 5th ed. McGraw-Hill

international edition, 2001.

USE manual, University of Bremen

 (http:// www.db.informatik.uni-bremen.de/project/USE

“Cooperative Robotics Simulator” project overview description
http://www.cis.ksu.edu/~sdeloach/CRSimulator/downloads/Cooperative%20Robo
tic%20Simulator.pdf

IEEE Guide for Software Quality Assurance Planning Std 730.1-1995.

IEEE Standard for Software Quality Assurance Plans Std 730-1998.

IEEE Recommended Practice for Software Requirements Specification IEEE
Std 830-1998

